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The purpose of this handout is to explain some of the basics of hyperbolic
geometry. I’ll talk entirely about the hyperbolic plane.

1 The Model

Let C denote the complex numbers. The hyperbolic plane, as a set, consists
of the complex numbers x + iy, with y > 0. This set is denoted by H

2. The
set ∂H

2 is another name for the complex number of the form x+0i. In other
words, ∂H

2 is just the real line.
The geodesics in H

2 are either circles that meet ∂H
2 at right angles.

The vertical rays count as “circles”. See Figure 1.

d

H
2

a

b
c

Figure 1: Geodesics and Points
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Exercise 1: Prove that any two distinct point in H
2 determine a unique

geodesic that contains these two points.

Exercise 2: Let γ be any geodesic in H
2 and let p be any point in H

2

not on γ. prove that there are infinitely many geodesics through p that do
not contain γ. This is the failure of the parallel postulete for hyperbolic
geometry.

The angle between any two geodesics, at a point of intersection, is de-
fined as usual as the angle between two curves: It is the angle of intersection
between the tangent lines to the circles. A geodesic segment is a circular arc
contained in a geodesic.

Exercise 3: Let p1, p2, p3 be three distinct points in H
2. These points

naturally determine a geodesic triangle. You can connect each of the points
to the other two by geodesic segments. Prove that the sum of interior angles
in any triangles is less than 180 degrees.

2 The Distance Formula

Given two points b, c ∈ H
2, we can find the points a, d such that b and d are

the endpoints of the geodesic joining a to b, as in Figure 1. If b and c are not
on the same vertical line then we define

∆(b, c) = log
|a − c||b − d|

|a − b||c − d|
. (1)

If b and c lie on the same vertical line then one of a or d is ∞. In this case
(assuming that d = ∞), we have

∆(b, c) = log
|a − c|

|a − b|
. (2)

Exercise 4: Prove that ∆(b, c) ≥ 0 and ∆(b, c) = 0 if and only if b = c.

Exercise 5: Explain how Equation 2 is a limiting case of Equation 1. Put
another way, prove that ∆(b, c) is a continuous function of the locations of b
and c.
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3 Symmetries of the Model

A Mobius transformation is a map of the form

f(x) =
Az + B

Cz + D
; AD − BC = 1. (3)

In Handout 5, I talked about these maps in general, when A, B, C, D ∈ C.
Here I want to take A, B, C, D ∈ R. We will call such a Mobius transforma-
tion a real Mobius transformation.

Exercise 6: Let M be a real Mobius transformation. Prove M(H2) = H
2.

Exercise 7: Let b and c be two points in H
2. Prove that

∆(M(b), M(c)) = ∆(b, c).

In other words, and real Mobius transformation is an isometry of H
2.

In Handout 5, I showed that Mobius transformations map circles to cir-
cles. Here is one additional piece of information about Mobius transforma-
tions.

Lemma 3.1 A mobius transformation M preserves angles between curves.

Proof: We can think of M as a map from R
2 to R

2, and write

M(x, y) = (M1(x, y), M2(x, y)).

We are interested in what happens at some point p ∈ R
2 such that M(p) ∈

R
2 as well. We can consider the matrix of first partial derivatives of M at p:

dM =

[

∂M1

∂x
∂M1

∂y
∂M2

∂x
∂M2

∂y

]

.

On small scales, M behaves like this linear transformation. In particular,
M preserves angles at p if and only if dM |p is a similarity–i.e. a rotation
followed by a dilation. The linear transformation dM |p is a similarity if
and only if it maps circles to circles. Since M maps circles to circles, so does
dM |p. Therefore, dM |p is a similarity. Therefore, M preserves angles at p. ♠

Now we know that every real Mobius transformation is a symmetry of
the model: It maps geodesics to geodesics and preserves distances.
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4 Hyperbolic Reflections

Complex conjugation z → z is defined by the equation

x + iy = x − iy. (4)

The map z → −z is just reflection in the vertical geodesic coming out of the
point 0. This map is a hyperbolic isometry, and also fixes every point on the
vertical geodesic.

As another example, the map Let R(z) = 1/z is a hyperbolic isometry
that fixes every point on the geodesic connecting −1 to 1. Such maps are
called hyperbolic reflections. That is, a hyperbolic reflection is an isometry
that fixes every point on some geodesic.

Exercise 8: Let γ be any hyperbolic geodesic. Prove that there is a hy-
perbolic reflection that fixes every point on γ.

Exercise 9: Let p be any point in H
2 and let θ be and angle. Prove

that there is a hyperbolic isometry that fixes p and rotates by angle 2θ about
p. (Hint: consider the product of two reflections in geodesics through p that
meet at angle θ.)

Exercise 10: Let γ be any geodesic in H
2 and let d > 0 be any number.

Finally let p ∈ γ be any point. Prove that there is a hyperbolic isometry T
such that T (γ) = γ and ∆(p, T (p)) = 2d. In other words, T is a translation
along γ by 2d units. (Hint: Consider the product of reflections that each fix
different geodesics perpendicular to γ.)

Exercise 11: Prove that the product of two hyperbolic reflections is a Mo-
bius transformation. You can do this just by calculation.

After having done these exercises, you will see that the symmetries of
the hyperbolic plane include reflections, rotations, and translations, just like
Euclidean symmetries. Of course, these symmetries look a little bit wierd to
our Euclidean eyes.
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