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The purpose of these notes is to give an account of the Robinson tiles.
These tiles were discovered by Raphael Robinson in 1978. They are the first
simple example of an aperiodic tiling system. One place to read about the
Robinson tiles in more detail is Charles Radin’s book, Miles of Tiles .

1 Basic Definitions

There are several equivalent ways to define the Robinson tiles. In the way
I’ll define them, there are 7 square tiles. Figure 1 shows them. One of the
tiles, the one with shading, is what I will call the special tile.

Figure 1

These tiles can be rotated in any way you like. The tiles can only fit
together in such a way that the outgoing arrows exactly match the ingoing
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arrows across an edge. figure 2 shows some examples of legal and illegal
matchings.

legal illegal
Figure 2

There are several more rules about how the tiles may be placed. Think
of placing each Robinson tile so that its center lies at a point of the form
(m, n), where m and n are integers. Then

1. Only the special tile can be placed on points (m, n) if both m and n
are even.

2. The special tile cannot be placed on points of the form (m, n) where m
is odd and n is even.

3. The special tile cannot be placed on points of the form (m, n) where m
is even and n is odd.

4. The special tile can (but does not have to) be placed on points of the
form (m, n) where both m and n are odd.

In this handout I will show that it is possible to tile the plane with
robinson tiles, but not in a way that has any infinite symmetry. If you want
to play with the Robinson tiles, you can copy Figure 3 multiple times and
cut out the tiles.
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Figure 3
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2 Existence of Tilings

The Robinson tilings are based on a hierarchical structure. Figure 4 shows
9 tiles joined together to form what I’ll call a level 1 supertile.

Figure 4: level 1 supertile

The 4 corners of the supertile are all “aligned”, and one sees a kind of
loop made out of a thick band. The structure of the level 1 supertile is very
similar to the structure of the special tile. One can see that the supertile is
kind of an extension of the special tile in the center.

Figure 5 shows what I’ll call a level 2 supertile. It is made as follows:

• Place 4 level 1 supertiles in such a way that they are all aligned, and
there is room for a single tile in the very center.

• Place a special tile in the center.

• Extend the branches of the central special tile in the only possible,
using other Robinson tiles.
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Figure 5: level 2 supertile

In general, one can build a level n super tile by repeating the above
method, using 4 level n − 1 supertiles.

Continuing in this way, you can tile ever larger portions of the plane with
Robinson tiles. Let’s call these partial tilings T1, T2, T3, ... By translating
the picture around, you can guarantee that the union of these partial tilings
covers the entire plane. Taking a limit, you get a tiling of the whole plane
by Robinson tiles.
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3 Forcing Supertiles

In this section we will show that any Robinson tiling must contain supertiles
of all levels. This is key step in the proof that a Robinson tiling cannot have
a infinite symmetry group.

3.1 Forcing Level 1

To get started on this proof, we first observe that, in any Robinson tiling, a
special tile pointing (with its shaded arms) in some direction forces a level 1
supertile extending in that direction. Figure 6 shows what we have in mind.
The proof of this fact is a simple exercise in trial-and-error.

Figure 6

Thus, T must contain level 1 supertiles. Moreover, any special tile in a
Robinson tiling forces a level 1 supertile in one of the 4 possible directions.
In some sense, all the special tiles in a Robinson tiling are magnetized. Each
one influences the alignment of others.

3.2 Forcing Level 2

Now we turn our attention to the way in which level 1 supertiles force level
2 supertiles. Each level 1 supertile has one of 4 orientations. We will show
that a level 1 supertile pointing in some direction (say soutwest) with its
thick arms forces a level 2 supertile extending in that direction. The main
step amounts to ruling out a misalignment of level 1 supertiles, as shown in
Figure 7.
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this supertile
is misaligned.
It should be 2
units to the right
and pointing
northwest.

that is facing S.W.
This is the supertile

Figure 7
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In case there is a misalignment like this, we would have 3 supertiles
arranged as in Figure 8.

1 2 3 4 5

Figure 8

Consider the shaded row of square tiles. Due to the all the outward arrows
above and below the shaded row, we see that all the tiles in this row point
in the same direction, either to the left or to the right. However, given the
S.E. pointing thick arm above square 1, there is no east-pointing tile that
can be placed in square 1. Likewise, there is no west-pointing tile that can
be placed in square 5. This contradiction rules out the misalignment. Hence,
our SW pointing supertile forces a second supertile as shown in Figure 9.
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Figure 9
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Continuing this argument, we see that each level 1 supertile forces the
existence of 4 aligned level 1 tiles, as shown in Figure 10.

Figure 10

Now we focus on what tiles can be placed in the very center of Figure 10.
If we do not use a special tile, then we produce a row of tiles all pointing
in the same direction and we get the same kind of contradiction that we
discussed above. Thus, the central tile is a special tile. From here, it is easy
to see that the rest of the tiles must complete to make the arms of a level 2
supertile.

3.3 Higher Level Supertiles

Essentially the same argument as we gave for level 1 → 2 shows that each
level n supertile in a Robinson tiling forces a level n + 1 supertile.
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4 Pairs of Supertiles

Lemma 4.1 Suppose that X1 and X2 are two level n supertiles contained in

the same Robinson tiling. Then the center of X1 is at least 2n units away

from the center of X2.

Proof: Let C1 denote the central cross of X1 and let C2 denote the central
cross of X2. The left half of Figure 10 shows the central cross of a level 2
supertile, and the general picture is similar.

two crosses
that crash
into each
other

Figure 10: central cross

If X1 and X2 are within 2n units of each other, then one of the arms of
C1 would crash through one of the arms of C2, and vice versa, as shown in
the right half of Figure 10. ♠

11



5 No Infinite Symmetry

Let T be a tiling of the plane by Robinson tiles. Let G denote the symmetry
group of T . That is, each element g ∈ G is an isometry of the plane such
that g(T ) = T . The purpose of this section is to show that G must be a
finite group.

Lemma 5.1 If G is an infinite group, then G contains a translation.

Proof: Since T is made up of square tiles, every element of G preserves the
coordinate axes of R

2. Thus, every finite order element of G is one of several
types:

1. A rotation by π/2 about some point.

2. A rotation by π around some point.

3. A reflection through a line of R
2. The line must parallel to one of 4

directions, because the reflection preserves the coordinate axes.

If G has infinitely many reflections, then G contains two elements g1 and g2

that are reflections in parallel lines. But then g1g2 is a translation along the
lines perpendicular to the lines of reflection.

If G only has finitely many reflections, then G has infinitely many rota-
tions. If some element g is rotation by π/2, then the square g2 is rotation
by π. Therefore, G contains infinitely many rotations by π. If g1 and g2 are
two such rotations, then g1g2 is again a translation. ♠

Suppose that G is an infinite group. Then G has a translation g, by the
previous result. Choose n to be much larger than the translation length of
g, and let X be a level n supertile contained in T . Then g(X) is also a level
n supertile. However, X and g(X) are too close together, and we contradict
Lemma 4.1. We can say more about G.

Lemma 5.2 The elements of G have a common fixed point.

Proof: Let g1, ..., gn
be the elements of G and let x be any point in the

plane. Then the center of mass 1

n
(g1(x) + ... + g

n
(x)) is fixed by all elements

of G. ♠

Since all elements of G preserve the coordinate axes, there are only 8
possible elements fixing the same point. Hence G has at most 8 elements.
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6 Uncountably Many Robinson Tilings

Here we will show that there are uncountably many distinct Robinson tilings.
By distinct we mean that the one tiling is not the translate of the other. The
argument we give is similar to what we did for the Penrose tilings.

Let’s say that a robust Robinson tiling is one created by the methods of
§2, in which all 4 directions of supertiles are used infinitely often. A robust
Robinson tiling has the following robustness property : For any pair of points
x and x′ in the plane, there is some supertile in the tiling that eventually
contains both x and x′. The point is that the supertiles of the robust tiling
grow outward in a kind of “spiralling” fashion that eventually engulfs the
entire plane. Figure 11 shows a caricature of this

Figure 11: central cross

Let T be a robust Robinson tiling. Given any point x ∈ R
2, we can assign

an infinite sequence τ(x). The nth term in τ(x) records the direction of the
level n supertile containing x. Eventually, this sequence is well defined. The
robustness property guarantees that the sequences τ(x) and τ(x′) have the
same tail end. Hence, there is a well-defined tail end τ(T ) associated to T .

Two robust Robinson tilings have the same tail end if and only if they
are equivalent by a translation. Furthermore, there are uncountably many
different tail ends. Therefore, there are uncountably many distinct Robinson
tilings.
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