ArcTan Relations by Rich Schwartz

0. The purpose of this note is to give a hyperbolic geometry interpreta-
tion of the relations R(a,b, c) of the form

{a} +{b} +{c} = 0; {z} = atan(1/x). (1)
Here atan is the arc-tangent, or inverse tangent function. Since the arctan-
gent is an odd function, we could also write {—a} = {b} + {c}. I learned
about these kinds of relations by reading Ron Knott’s website. I worked out
the connection to hyperbolic geometry myself, but I am very sure that all of
this is known to number theorists.

1. Let me first explain the importance of these relations, or at least one
of them, namely R(—1,2,3). I think that Euler discovered this relation.
Leibniz’s famous formula says that
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In spite of its great beauty, this formula is not very good for actually com-

puting 7, because it converges very slowly. Summing the first 1000 terms

gives 2 digits of accuracy. Observe that 7/4 = atan(1), and that there is a

more general relation
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tan(z) = = — =+
atan(z) = — — —
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This equation converges for z € [0, 1]. The smaller the value of x, the faster
the convergence. When z < 1 the convergence is exponentially fast. Since

{1} = {2} + {3}, we have
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Summing the first 1000 terms gives the first 605 digits of 7. This is a much
better method for computing .

2. The familiar formula

tan(z +y) = 1tint(§1)1(;)t?;é?;> @)
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applied to the relation {—a} = {b} + {c} yields

;1_ b+C
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Rearranging, we get
ab+bc+ca—1

albc—1) 0.

Cancelling out the (positive) denominator, we get

ab+bc+ ca = 1. (3)

This is a familiar Diophantine equation, and its solutions are well known.
Now I'm going to explain what it means in terms of hyperbolic geometry.

3. Introduce the function L : R* x R® — R defined by
1
LX,)Y) = §(x1y2 + Toys + T3y + Y172 + YaTs + Y3T1). (4)

Here X = (21,22, 23) and Y = (y1,¥2,y3). The function L has the following
general properties.

o L(X,Y)=L(Y,X)
o L(X1+ Xo,Y) = L(X1,Y) + L(Xs,Y)
o L(aX,Y)=aL(X,Y).

In short, L is a bilinear form.
Note that
L(X, X) = I1T9 + Tol3 + 3.

Changing variables, we have
L(X,X) = ab+ bc + ca; X = (a,b,c). (5)

Therefore, the solutions to Equation 3 are precisely those integer vectors
X = (a,b,c). Note that (a,b,c) is a solution iff (—a,—b,—c) is a solution.
So, we may work with those integer vectors such that a+b+c¢ > 0 and a,b, ¢
are all nonzero. We call these the good vectors.



4. The set of vectors X € R?® satisfying L(X,X) = 1 is precisely a hy-
perboloid of 2 sheets. One of the sheets contains vectors whose coordinate
sum is positive. Let H? denote the sheet containing the vectors with positive
coordinate sum. The good vectors all live in H?. The sheet H? is another
incarnation of the Lorentz model for the hyperbolic plane.

Consider the standard basis vectors

E, =(1,0,0); Ey, =(0,1,0); E;=(0,0,1). (6)
Note that L(Ey, Fx) = 0 for k = 1,2,3. Consider also the vectors
Fy=(1,-1,-1); Fy=(-1,1,-1); F3(—1,-1,1). (7)
These vectors enjoy the property that
L(E;, F;) = 0; i # 7, L(E;, F;) = —1. (8)
Next, define the maps Ry, : R* — R? by the formula

L(X, Fy)

B0 =X =20 E

EFy, (9)
Just using the axioms that L satisfies as a bilinear form, we see that Ry is
an order 2 L-preserving linear transformation which fixes Fj_; and Eyy;. In
terms of matrices,

-1 0 0 1 2 0 1 0 2
Rl = 2 1 0 ) R2 =10 -1 0 y Rg =0 1 2 (10)
2 01 0 2 1 0 0 -1

For example, let so = (1,1,0). Then up to permutation we generate the
Fibonacci relations (on Ron Knotts” website) by iteratively applying the se-
quence Rl, RQ, R3, Rl, RQ, Rg, R1 to sgp. That iS,

o 5= Ri(s0) = (—1,3,2).

e s, = Ry(s1) =(5,-3,8).

o s3 = Rs(se) = (21,13,-8).

o sy = Ri(s3) = (—21,55,34) ...



5. Here is a way to visualize what is going on. Let Il denote the plane
4y + 2z =1. There is a nice map H?* — II given by

($1,$2,$3) (11)

— .
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One can then draw pictures of vectors by projecting to II and identifying II
with the piece of paper on which you are drawing. The image of H? under
this projection is an open disk, which we think of as the open unit disk. A
vector X is null if L(X, X)) = 0. The projection map makes sense on the null
vectors even though these points do not lie in H?. The null vectors project
to the unit circle, which is the boundary of the unit disk. In particular, the
vectors Fy, Fy, E3 project to the points of an equilateral triangle inscribed
in the unit circle. Figure 1 shows these objects and also the 3 points of H?
that project to the midpoints of the edges of the said equilateral triangle.

(1,0,0)

+ (1,0,1)

(0,1,0)

(0,0,1)
Figure 1: Projection to II.

The reader familiar with this stuff will recognize that the disk I am de-
scribing is the Klein model of the hyperbolic plane. The yellow triangle is
known as an ideal triangle in this model. The unit circle is known as the
tdeal boundary.



6. Ome can also visualize the action of the “reflections” Ry, Ry, R3 on the
unit disk. These maps act as real projective transformations of the unit disk
— i.e. homeomorphisms that carry line segments to line segments. Call the
yellow triangle A. Figure 2 shows the three triangles Ry(A) for k = 1,2, 3.
We have also drawn in some additional points. The new labels are in black.
Our new points are the images of the old ones under the reflections. For
instance (—1,3,2) = R(1,1,0).

(3,2,-1) (1,0,0)

(3,2,-1)
(3,-1,2)

(2,-1,3)

-1,2,3
(-1.2,3) (0,0,2)

Figure 1: More triangles and points.

One can see that the new points are just the permutations of the good
vectors corresponding to the Euler relations. Each ideal triangle has a natu-
ral “hyperbolic midpoint”. For the yellow triangle the hyperbolic midpoints
coincide with the FEuclidean ones. For the red triangle, the hyperbolic mid-
points appear to be “offcenter” from our Euclidean perspective. The labelled
points, however, are the hyperbolic midpoints of the relevant triangles. This
property comes from the fact that our reflections are hyperbolic isometries:
They preserve the natural distance structure defined in the hyperbolic plane.
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7. Say that a word is a finite composition of the reflections, e.g. RsRj3
or Ry Ry R3Ry. The group generated by Ry, Ry, R3 consists of all words. This
group is known as the ideal triangle group. The orbit of the central yellow
triangle under this group is the famous Farey tiling. Every edge of the Farey
triangulation has a hyperbolic center. This point has the property that hy-
perbolic rotation about this point is a symmetry of the Farey tiling. We say
that an edge is central if it is an edge of the central yellow triangle; otherwise
we say it is non-central. All but 3 Farey edges are non-central.

Say that a Farey midpoint is the hyperbolic midpoint of a Farey edge.
Call the vectors (0,1,1) and (1,0,1) and (1, 1,0) the central Farey midpoints.
These are the hyperbolic midpoints of the central Farey edges. Here is the
main result.

Theorem 0.1 The hyperbolic midpoints of the non-central Farey edges are
in bigection with the good vectors.

Proof: Let’s first show that any good vector is a Farey midpoint. Suppose
that V' is a good vector. Then there is some word W such that V' = W (V) is
contained in the yellow triangle. By induction, W is L-preserving, and also
preserves integer points. But then V' = (a/, ¥, ) is such that o/, ¢ are all
non-negative integers and a'b’ + b'c’ + a’ = 1. This forces V' to be a central
Farey midpoint. Hence V' = W~(V”’) is a Farey midpoint.

Applying elements of the group (R, Rs, R3} repeatedly, and using induc-
tion, we see that any Farey midpoint (a,b, c) satisfies the relation R(a,b,c)
and has integer coordinates. We just have to check that a, b, c are all positive.

if a = 0, then bc = 1, and this forces |b| = |¢| = 1. The positive coordinate
sum then forces b = ¢ = 1. This gives us one of the central Farey midpoints.
)



