
A Result about Fiber Products:
The purpose of this note is to prove a result about the fiber product.

I guess that the result here is well-known, but I don’t know where to find
it in the literature. the hypotheses of the result are somewhat artificially
restricted for ease of exposition.

Let R/Z be the circle. We call the map f : R/Z → R/Z a nice map if f
has degree 1, is piecewise linear, and is not constant on any interval. A nice
map is allowed to reverse direction. For instance, it might wind 999 times
around in one direction and then 1000 times around in the other direction.

We call the places where f locally reverses direction the fold points . We
call t = f(s) a fold value if s is a fold point for f . We call two nice maps f1
and f2 unrelated if they have no common fold values.

Let T = (R/Z)2. Given two nice maps f1, f2 we can form the fiber
product

H(f1, f2) = {(s1, s2) ∈ T | f1(s1) = f2(s2)}. (1)

Here is the result.

Theorem 0.1 Suppose f1 and f2 are unrelated nice maps. Then H(f1, f2)
is a polygonal 1-manifold which has exactly one connected component that
is homologically nontrivial in T . When suitably oriented, the one nontrivial
component represents (1, 1) in homology H1(T ).

It is not hard to imagine or prove that H(f1, f2) is a manifold that rep-
resents (1, 1) in homology. The interesting part of the result is that there is
exactly one essential component of H(f1, f2).

We will prove Theorem 0.1 through a series of 4 lemmas.

Lemma 0.2 H is a polygonal 1-manifold.

Proof: Given two partitions {Ii} and {Jj} of R/Z into intervals, we can take
the product and get a partition of T into rectangles {Rij} with Rij = Ii×Jj.
Since f1 and f2 are unrelated, we can choose these partitions so that the
restriction of each function to each interval is linear and injective, and no
vertex of an Rij belongs to H. The locations of the fold points force us to
choose certain breaks in the partitions, but otherwise we choose the breaks
generically.

Let Hij = H ∩ Rij. By construction Hij is either the emptyset or a line
segment which connects the interior point of some edge of Rij to the interior
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point of some other edge of Rij. Consider the picture around an endpoint p
of Hij. Let R′ be the rectangle adjacent to Rij across the edge containing p.
Since H ∩ R′ is not the emptyset, H ∩ R′ has the structure just mentioned.
In particular, Hij meets a unique line segment of H at p. This shows that
H is a polygonal 1-manifold. ♠

Lemma 0.3 H has an orientation with the following properties:

• Whenever the generic vertical geodesic x = x0 intersects H at a point
(x0, y), the relevant segment points to the right if and only if f ′

2(y) > 0.

• Whenever the generic horizontal geodesic y = y0 intersects H at a point
(x, y0), the relevant segment points to the top if and only if f ′

1(x) > 0.

Proof: Here is the construction. If f1(Ij) and f2(Jj) are not disjoint, then
they overlap in one of 4 possible ways. At the same time, there are 4 possible
orientations for these segments, depending on the signs of the derivatives
f ′
1 and f ′

2. All in all, there are 16 different possibilities. For each of these
possibilities, we choose an orientation for the corresponding segment of H,
according to the scheme shown in Figure 1.
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Figure 1: The orientation on the fiber product

A case-by-case check shows that this scheme defines a consistent orienta-
tion on H. Figure 2 shows how Cases 1,2 fit together and how Cases 1,3 fit
together.
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Figure 2: Adjacent pairs of segments and their tiles.
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Now we check how the geodesic x = x0. intersects one of our tiles. In
all cases, the arrow in Figure 1 points to the right if and only if the lower of
the two segments (corresponding to f2(Jj) points to the right. Similarly, we
check how the geodesic y = y0 intersects our tiles. In all cases, the arrow in
Figure 1 points up if and only if the upper of the two segments (correspond-
ing to f1(Ii)) points to the right. ♠

From now on we equip H with the orientation given above, and we call
it the natural orientation. Since H is oriented, it makes sense to ask which
homology class H represents in H1(T ).

Lemma 0.4 H represents the element (1, 1) in H1(T ).

Proof: If suffices to show that the geodesics x = x0 amd y = y0 each
intersect H once, counting the orientations. Consider x = x0. Each inter-
section point with this geodesic corresponds to a parameter value y where
f2(y) = f(x0). The orientation points to the right if and only if f ′

2(y) > 0.
But the number of times f ′

2(y) > 0 is one more than the number of times
f ′
2(y) < 0 because f2 has degree 1. In other words, f2(R/Z) crosses a point

righwards one more time than it crosses leftwards. This proves our claim for
the geodesic x = x0. A similar argument works for the geodesic y = y0. ♠

Now we know that H represents (1, 1) in H1(T ). Two distinct and non-
trivial homology classes in T intersect unless they represent the same homol-
ogy classes or their sum is 0 in homology. Since H is an embedded 1-manifold,
all the homologically nontrivial components of H represent either (1, 1) or
(−1,−1). Moreover, the number of (1, 1) representatives is one more than
the number of (−1,−1) representatives. The last step finishes the proof.

Lemma 0.5 An arbitrary non-trivial component h of H represents (1, 1) in
homology.

We can find a piecewise linear map a : R/Z → T such that a = (a1, a2)
parametrizes h, and each aj is a degree 1 map. Define b = fj ◦ a1. This map
is independent of j and has degree 1.

The parametrization a gives h a second orientation of h which we call the
forced orientation. The component h represents the element (1, 1) in H1(T )
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with respect to the forced orientation. So, to finish the proof, we need to
show that the forced orientation and the natural orientation coincide.

Given t ∈ R/Z we can compare the signs of f ′
2(a2(t)) and a′1(t). The

former quantity determines the direction that h points across the vertical
line through a(t). The latter quantity determines the direction that h points
across the vertical line through a(t). The two orientations agree iff the two
quantities have the same sign. By the Chain Rule, f ′

2(a2(t)) is positive if and
only if a′2(t) and b′(t) have the same sign. Therefore the two orientations
agree if there is any point t such that

a′1(t)a
′
2(t)b

′(t) > 0 (2)

Note that aj(s) = aj(t) implies that b(s) = b(t). This is because b = fj ◦ aj.
We will suppose that Equation 2 fails for all t and we will derive a contra-

diction. We can find lifts A1, A2, B : R → R of a1, a2, b respectively. Each
function F is such that F (x+1) = F (x)+1. The lifted functions also satisfy
the same property as above: If Aj(s) = Aj(t) then B(s) = B(t). Moreover
A′

j = a′j and B′ = b′. So, A′
1(t)A

′
2(t)B

′(t) < 0 whenever all these derivatives
are defined. In particular, these derivatives cannot all be positive.

Say that a point t ∈ R is a peak if the function B(t) − t has a global
maximum at t. A peak exists because the function B(t)− t is periodic. Let
t0 be a peak. By construction, B(s) < B(t0) for all s < t0. For ε > 0
sufficiently small, we have B′(t0 − ε) ≥ 1 > 0. We pick ε so small that no
derivative changes sign on [t0 − ε, t0]. Since not all derivatives are positive,
have A′

j(t0 − ε) < 0 for some j. By the Fundamental Theorem of Calculus,
Aj(t0 − ε) > Aj(t0). Since Aj(t0 − 1) < Aj(t0) there is some s ∈ (t0 − 1, t0)
such that Aj(s) = Aj(t0). But then B(s) = B(t0). This is a contradiction. ♠
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