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1 Introduction

These notes explain some things I learned about the Long-Reid Conjecture
when I unsuccessfully tried to solve it. I had thought for several weeks that
I had solved the problem and I tried to write a paper about it. I quickly
discovered a gap in the proof and abandoned the paper. These notes, which
are a remnant of the abandoned paper, make no claims about solving the
conjecture. However, they do have a clear statement of the problem and
perhaps some interesting ideas. One of the nice ideas (in §4) is a very concrete
way of describing the Serre tree and the action of GL2(Q) on it. Nic Brody
has a similar understanding of these group actions, and probably he has also
written about it.

A group Γ acts properly on a space X if for every compact K ⊂ X, the
set

{γ ∈ Γ| γ(K) ∩K 6= ∅}
is finite. Here is the main question: Can a surface group act properly on
the product of infinite, finite valence, trees? This is listed as Question 1
in the paper [FLSS]. Constructions in Teichmuller theory give examples of
a surface group acting properly on the product of two R-trees, but so far
nobody has found a way to replace R-trees by finite valence trees.

Darren Long and Alan Reid have a candidate construction based on the
action of GL2(Q) on Serre trees. Let Tp be the infinite regular tree of valence
p+1. In Serre’s famous book [S], called Trees , he describes how GL2(Q) nat-
urally acts on Tp. The action is really defined for the larger group GL2(Qp)
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of nonsingular 2×2 matrices with p-adic entries. We will formally recall how
this works in §4, and also explain how we compute the action in practice.

Long and Reid consider a specific 2-generator group Γ ⊂ GL2(Q). Up to
scaling and GL2(Q)-conjugation, Long and Reid’s group Γ is generated by a
and b where

a =

[
9 2
0 1

]
, b =

[
0 −16
4 83

]
. (1)

They conjecture that the Serre action of (a conjugate of) Γ on X = T2 × T3
is proper. The advantage Γ has over the original group is that one of the
commutators

c = a−1bab−1 =

[
−9 −2
41 9

]
(2)

lies in SL2(Z) and therefore fixes the natural origin O in X, namely the
point represented by the lattice Z2

p of pairs of p-adic integers. This makes
the orbit map γ → γ(O) especially attractive.

This is a great guess. As Long and Reid point out, Γ fits into a 2-
parameter family of 2-generator groups which are orbifold fundamental groups
of hyperbolic tori having one cone angle of π. The matrix entries are rational
functions of the parameters. By cleverly choosing the parameters, Reid and
Long controlled the prime factorization of the entries in a promising way.
That is roughly how their guess arose.

Thanks to the nature of the hyperbolic quotient H2/Γ, the commutator
c acts as an involution on the hyperbolic plane H2, and Γ preserves a tiling
T by hyperbolic quadrilaterals having opposite sides of equal length. The
Γ-orbit of the fixed point of c is the vertex set of T . The stabilizer subgroup
of each vertex point has order 2. See §3.

I will explore some of the geometry of the situation. In particular, I will
construct a space Y0, a parallelogram-tiled nonpositively curved translation
surface, which is closely related to the group Γ and its actions. The parallel-
ograms all have the same shape as the parallelogram P ⊂ R2 having vertices
±(3, 1) and ±(3, 3). In Y0, there are 8 parallelograms fitting around a vertex,
with the angles alternating acute and obtuse. All the cone angles are 4π.
A group isomorphic to Γ acts isometrically on Y0 with compact quotient.
There is an equivariant map Φ : H2 → Y0 which maps tiles to parallelo-
grams. Using the orbit map discussed above (and identifying H2 with Y0),
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we construct an equivariant and piecewise isometric mapping

Ψ : Y0 → X. (3)

Ψ turns out to be an isometry in the complement of the vertices of Y0.
However, it is not a global isometric embedding, or even an embedding.

Conjecture 1.1 If Ψ(a) = Ψ(b) then distance(a, b) ≤ 2.

Conjecture 1.1 is really just a reformulation of the Long-Reid Conjecture.
If Γ does not act properly on X then we can find an infinite sequence of
words in Γ which move the origin in X a bounded distance. This gives an
infinite number of vertices in Y0 that Ψ maps to a bounded neighborhood of
the origin. By the pidgeonhole principle, Ψ must map two distant vertices
to the same point, contradicting Conjecture 1.1.

What is attractive about Conjecture 1.1 is that it involves a concrete map
of an infinite translation surface into an infinite square complex. Everything
in sight is a piecewise flat object. I have no idea how prove Conjecture 1.1,
however.

These notes are organized as follows. In §2 I will construct the translation
surface and discuss how it relates to Γ. In §3 I will discuss how Γ acts on
H2, the hyperbolic plane. In §4 I will explain how to compute the action of
Γ on T2 × T3. In §5 I will prove two technical lemmas left over from §2.
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2 Some Geometric Structure

2.1 The Hyperbolic Tiling

Let H2 denote the hyperbolic plane. Let Γ = 〈a, b〉 be the group given in
Equation 1. Let c = [A, b] = AbaB be the commutator of A and B. Here
A = a−1 and B = b−1. Let v0 ∈H2 be the fixed point of the involution c.

Γ preserves a tiling T of H2 by hyperbolic quadrilaterals having opposite
sides of equal length and adjacent sides of unequal lengths. We call these
quadrilaterals tiles . The vertex set of T is the Γ-orbit of v0. Figure 2 shows
a hand-drawn but accurate drawing of one flower of T in H2. The numbers
indicate vertices vj = wj(v0), where w1, ..., w16 are certain words we list in
§3.2.

0

2

16

3

1

Figure 1. The hyperbolic tiling and a Euclidean parallelogram

We color the edges of the tiling red and blue as shown in Figure 1. We also
distinguish one diagonal in each tile. The pattern is that the distinguished
diagonals in adjacent tiles do not share any vertices. When distinguished or
undistinguished diagonals meet at a vertex, they meet at right angles.
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2.2 The Infinite Translation Surface

Let P be the Euclidean parallelogram having vertices ±(3, 1) and ±(3, 3).
The right side of Figure 1 shows a Euclidean parallelogram having the same
shape as P . We color the short sides of P blue and the long sides red. We
also distinguish the long diagonal of P . In other words, we decorate P as in
Figure 1. Let Y0 be the space discussed in the introduction. Again, we build
Y0 by fitting 8 copies of P around each vertex, so that the angles alternate
acute and obtuse.

Lemma 2.1 Up to an order 2 rotation, there is a unique homeomorphism
from a hyperbolic tile τ to P which maps geodesic segments in τ to line
segments in P and respects the decorations.

Proof: This proof only uses the fact that τ is a hyperbolic quadrilateral
whose opposite sides have the same length. We work in the Klein model, so
that the geodesics are straight line segments and the isometry group acts by
projective automorphisms of the unit disk. This means that under a suitable
isometry, τ is a Euclidean rectangle. In this case, there are two decoration
respecting affine maps from τ to P . These maps differ by an order 2 rotation,
and they are the unique maps which do the job. ♠

Here is the quasi-isometric map Φ : H2 → Y0. We first choose the
homeomorphism from Lemma 2.1 and then we extend from tile to tile so as
to make the whole map a homeomorphism. What makes Φ fit together across
tile edges is that the maps from Lemma 2.1 send the hyperbolic midpoints of
the tiles to the midpoints of edges of the parallelograms. The map Φ is a kind
of combinatorial isomorphism in which we are just switching the geometry
of the tiles.

2.3 The Orbit Map

We identify the space Y0 with H2 in the way determined by the map Φ
just discussed. Really, we are just changing the local geometry but keeping
everything else – the combinatorics, decorations, and group action – the same.
One could think of Y0 as H2 with a different Γ-invariant metric. Figure 1
will be our guide sometimes.

We first establish some notation. Recall that X = T2× T3 is the product
two Serre trees, the 2-adic tree and the 3-adic tree. Let πp : X → Tp
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be projection for p = 2, 3. As mentioned in the introduction, each matrix
M ∈ Γ acts on T2 and T3 by the Serre action.

Given a pair of points ψ1, ψ2 ∈ X we associate a pair of integers (d2, d3),
where dp is the distance from πp(ψ1) to πp(ψ2) in Tp. We call (d2, d3) the pitch
of the pair (ψ1, ψ2). Likewise we define the pitch of a geodesic segment in X
to be the pitch of its pair of endpoints. The usual metric on X computes the
distance between ψ1 and ψ2 as

√
d22 + d23.

Let V denote the vertex set of Y0. Let v0 ∈ V be the vertex fixed by
c. The element c ∈ Γ also fixes the origin O ∈ X, as we mentioned in the
introduction. We define the orbit map Ψ : V → Y :

Ψ(v) = γ(O), v = γ(v0). (4)

The stabilizer of v0 in Γ is just the order 2 group generated by c. Thus Ψ is
a well-defined map.

Now we wish to extend Ψ to the rest of Y0. We first present some motivat-
ing calculations. Here, and below, the vertex vj corresponds to the number
j in Figure 1. We have vj = wj(O) where wj is the jth word listed in §3.2.
Let ψj = Ψ(vj). We compute the following for the vertices v0, v1, v2, v3 of a
tile.

1. Blue edge: The pitch of (ψ0, ψ1) is (0, 2).

2. Blue edge: The pitch of (ψ2, ψ3) is (0, 2).

3. Red edge: The pitch of (ψ1, ψ2) is (6, 4).

4. Red edge: The pitch of (ψ3, ψ0) is (6, 4).

5. Distinguished diagonal: The pitch of (ψ1, ψ3) is (6, 6).

6. Undistinguished diagonal: The pitch of (ψ2, ψ0) is (6, 2).

In short, the pitches precisely calculate the displacement vectors of the cor-
responding edges of the parallelograms comprising Y0. This, of course, is
why we defined Y0 this way. These calculations suggest the following result,
which we also establish by direct calculation in §4.

Lemma 2.2 The points ψ0, ψ1, ψ2, ψ3 are the vertices of a geodesically em-
bedded Euclidean parallelogram which is isometric to a tile of Y0.
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Thus, we can extend our map Ψ to all of Y0 by making its restriction to
each tile the kind of isometry which we just discussed. Ψ sends the distin-
guished diagonals in each tile to a segment of pitch (6, 6). The map sends
the undistinguished diagonals to segments of pitch (6, 2).

By construction, Ψ is an isometric embedding when restricted to the
interior of each tile. We also establish the following result, which actually
subsumes Lemma 2.2.

Lemma 2.3 Let τ1 and τ2 be two adjacent tiles of Y0. The restriction of Ψ
to the interior of τ1 ∪ τ2 is an isometric embedding.

Lemma 2.3 shows that Ψ is a local isometric embedding of Y0 − V into
X. In other words, the only place where Ψ may not be a local isometry is at
the vertices.

Here we explain why Ψ : Y0 → X cannot be an embedding onto its image
Y = Ψ(Y0). If Ψ was an embedding, then the fact that Ψ is a local isometry
away from vertices would force the link K3,4 of a vertex in X to contain an
embedded 8-cycle. Since K3,4 only has 7 vertices, this is impossible. Hence
Ψ cannot be an embedding, let alone an isometric embedding.

1

2

3

4,8

5 7

6

Figure 2. An immersed 8-cycle in K3,4.

At the same time, K3,4 does have an immersed 8-cycle which is homeo-
morphic to a figure 8 and invariant under an involution which sends (i) to
(i+ 4) mod 8. Figure 2 shows an example. The 1-neighborhood of Y at each
vertex v ∈ Y is isometric to a suitably metrized cone on such an 8-cycle. The
action of the non-identity stabilizer of v in Γ implements the involution just
mentioned.
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3 The Hyperbolic Picture

3.1 The Group

Recall that Γ is generated by a and b from Equation 1 and c = AbaB. Again,

a =

[
9 2
0 1

]
, b =

[
0 −16
4 83

]
, c =

[
−9 −2
41 9

]
(5)

We let Γ act on the upper half plane by the action:[
α β
γ δ

]
(z) =

αz + γ

βz + δ
. (6)

Note that this action is non-standard: It is the transpose of the usual action.
The fixed point of c is

z0 =
9

2
+

1

2
i.

For Figure 2, we map z0 to the origin of the unit disk using the map

T (w) =
w′ − i
w′ + i

, w′ = 2w − 9.

3.2 The Tiling

For convenience, we repeat Figure 2. Here are the words we mentioned in
§2.1.

1. w1 = A.

2. w2 = ba.

3. w3 = baa.

4. w4 = baaa.

5. w5 = a.

6. w6 = ABc.

7. w7 = AABc.

8. w8 = AABcAc.
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The other words are determined by the rule that w8+j = wjc. In terms of
group actions, our notation is such that d1...dn means “First apply d1, then
d2, etc.”

0

2

16

3

1

Figure 3. The hyperbolic tiling

3.3 The Geometry of the Group

The vertex v0 in the Poincare model corresponding to the word w1 = A is
given by

T ◦ A(z0) =
9

10
+

i

10
.

This looks about right in the picture. In the upper half plane, the corre-
sponding point is

z1 = A(z0) =
−1

2
+

9

2
i.

We also compute

z2 = (b.a)(z0) =
684

425
+

288

425
i,
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z3 = (b.a.a)(z0) =
29484

8345
+

2592

8345
i.

The points z0, z1, z2, z3 are the vertices of one of the yellow quadrilateral τ
in Figure 3.

We can use these calculations to get the information we have used about
the hyperbolic action of Γ.

Lemma 3.1 The opposite sides of τ have the same length. These sides are
paired by the elements A and baa.

Proof: We compute that A(z3) = z2. Hence A pairs the red sides of τ and
they have the same length. We likewise compute that baa(z1) = z2. Hence
baa pairs the blue sides of τ and they have the same length. ♠

Lemma 3.2 Γ acts properly on H2 and τ is a fundamental domain for the
action. Moreover, the stabilizer of z0 is the order 2 subgroup consisting of c
and the identity.

Proof: (sketch) Note that A and baa pair the opposite sides of τ . We com-
pute that [A, baa] = c. This fact implies that 8 translates of τ fit around
each vertex of τ . Finally A and baa generate Γ. The Poincare Polyhedron
Theorem now gives the desired results. ♠

Lemma 3.3 The red and blue edges in the tiling fit together to form a union
of geodesics.

Proof: This follows from the Poincare Theorem as well, but we can also do
a direct calculation. We compute that v5 = iv1 and v7 = iv3. Therefore,
around a vertex, consecutive red or blue edges form a right angle. This suf-
fices. ♠
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4 Calculating the Serre Action

4.1 Formal Definition of the Serre Action

Let Qp denote the p-adic field and let Zp denote the ring of p-adic integers. A
rank two Zp module is a a subset of (Qp)

2 which is invariant under addition
and Zp scaling. Two such modules Λ1 and Λ2 are declared equivalent if there
is some r ∈ Qp such that rΛ1 = Λ2, and adjacent if there is some r ∈ Qp

such that rΛ1 ⊂ Λ2 and Λ2/(rΛ1) is isomorphic to Z/p.
Serre forms a graph whose vertices are equivalence classes of rank 2 Zp

modules and joins them by an edge if two equivalence classes have adjacent
representatives. Serre then proves that the resulting graph is the infinite reg-
ular tree of valence Tp! The group GL2(Qp) acts on these rank two modules
and preserves both the relations of equivalence and adjacency. This gives the
Serre action on Tp.

4.2 An Integer Model for Serre Trees

I found these amazing results very hard to understand until I started thinking
about it in terms of something much easier to understand – the connection
between Zp and a rooted p+1-valent tree. This tree has one vertex of degree
p – the root – and the remaining vertices have degree p+ 1.

Here is the description. Zp is the inverse limit of the chain of homomor-
phisms

· · · → Z/p3 → Z/p2 → Z/p1 → Z/p0.

Here Z/p0 is just defined to be {0}. We form a tree by joining each element
in Z/pk to the element in Z/pk−1 to which it reduces. This gives us our
rooted p + 1 valent regular tree. The ring Zp can be identified with the set
of infinite paths in the tree. It turns out that we can make the Serre tree Tp
look very much like this much simpler object. In particular, we can take all
the representatives to have an integer basis. We will first deal with the cases
p = 2 and then consider the case p = 3 somewhat more briefly.

The case p = 2: We can take representatives for these modules which are
certain lower triangular integer matrices, in which the diagonal entries are
powers of 2. The module is the Zp span of the rows. We build the tree in
layers, with the nth layer consisting of certain such matrices of determinant
2n. The left two-thirds of the tree has precisely the structure coming from
our rooted tree. The right one-third of the tree is a kind of inversion of
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the left two-thirds. Thus, we really just have to think about the rooted tree
construction and remember how the inversion works. Beautifully, each lattice
manifestly has index 2 in the one it joins to on the layer above. So, one can
see by inspection that this really is a correct model for T2. Figure 4 shows
the first 4 layers of the Serre Tree T2.

1  0

0  1

2 0

0 1

2 0

1 1

1 0

0 2

4 0

0 1

4 0

2 1

4 0

1 1

4 0 

3 1

1 0

0 4

2 0

1 2

8 0

0 1

8 0

4 1

8 0

1 1

8 0

5 1

8 0

2 1

8 0 

6 1

8 0 

3 1

8 0

7 1

4 0

1 2

4 0

3 2

2 0

2 4

1 0

0 8

Figure 4. The beginning of T2.

T3 works the same way, but with powers of 3 replacing powers of 2. Figure
5 shows the first 3 layers of T3.

1  0

0  1

3 0

0 1

3 0

1 1

3 0

0 2

9 0

0 1

9 0

3 1

9 0

1 1

9 0 

4 1

1 0

0 9

3 0

2 3

1 0

0 3

9 0

7 1

3 0

1 3

9 0

6 1

9 0

2 1

9 0

5 1 

9 0

8 1

Figure 5. The beginning of T3.
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4.3 Computing the Serre Action in Principle

In principle, we compute the Serre action on our model just by taking the
relevant matrices, multiplying them out, and then matching the answer to
the representative in our model. Even though we don’t really compute things
this way, we include an example to illustrate our convention for multiplying
matrices. Let

M =

[
2 1
0 2

]
be our group element and let

Λ =

[
1 0
0 2

]
be a lattice in our model. We compute

M(Λ) = Λ×M =

[
2 1
0 4

]
This is not in our model, but note that the module in question is the span
of U = (2, 1) and V = (0, 4). This is also the span of U and 4U −V = (8, 0).
Thus, in terms of the Serre action,

M(Λ) =

[
8 0
2 1

]
.

This one is in our model.

Remarks:
(i) To make the method here more in line with the hyperbolic geometry
action, we could instead take the left transpose action

M(Λ) = (M t × Λt)t.

I somewhat regret not using more standard conventions but I consider it a
miracle that my program actually works.
(ii) When we are trying to figure out the equivalence, we never need to deal
with Zp. Instead we can work with the ring Rp consisting of fractions of the
form a/b where b is relatively prime to p. In other words, in our calculation
above, we are free to take integer combinations of the form uU + vV with
u, v ∈ Rp. We can also scale by elements of Rp.
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4.4 Computing the Serre Action in Practice

I gave the example above mainly to explain how the action works in princi-
ple. For large words, it seems really quite difficult to find the equivalence.
Sometimes, though not for the example above, we really need to work with
the ring Rp. Instead of doing this, I found two tricks for doing and certifying
the calculations. One trick is to simply write the generators of Γ in terms
of shorter generators and compute with these instead. The second trick is
somewhat akin to Hensel’s lemma. I will explain these tricks in turn. My
code implements these tricks.

Simpler Generators: We introduce the simpler matrices

µ0 =

[
3 0
0 1

]
, µ2 =

[
2 0
0 1

]
, µ4 =

[
2 1
0 2

]
, µ6 =

[
2 0
1 2

]
. (7)

and set µj+1 = µ−1j for j = 0, 2, 4, 6. These matrices do not belong to Γ but
we can use them to generate the generators a and b of Γ. From trial and
error, I found that

a = (35300242), b = (35366333344444444433242). (8)

This notation means that a = µ3µ5µ3µ0... and likewise for b.

Guided Lattice Finding: Even computing with the simpler matrices is
tough. Here is our trick. I think of this trick as being similar to Hensel’s
Lemma, at least in spirit. We explain the trick for T2. It works essentially
the same way for T3. We define the full reduction of a lattice Λ in our model
to be the sequence Λ0, ...,Λn = Λ comprising the path connecting the level
0 lattice to Λ. Let θ be one of our 8 matrices above. We first precompute
θ(Λ0). This is easy.

Next, assuming that we have computed θ(Λk), we know that A = θ(Λk+1)
must be one of the 3 lattices B1, B2, B3 adjacent to θ(Λk). So, we only need
to find one of three lattices and certify equivalence. To do this, we apply
an auxiliary matching routine which finds a sufficient condition for A and
some Bj to match. There is no theoretical reason to think that my matching
routine always works, but it did work for about a million randomly chosen
words in Γ having length about 25. The matching routine breaks when we
try it with some other smallish matrices, but we don’t care.
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Simple Matching: First we explain a method which sometimes certifies
that lattices E and F match. Let M∗ denote the integer matrix such that
MM∗ = det(M).

• We divide out by the gcd of the entries of E to get a new matrix E ′.

• We divide out by the gcd of the entries of F to get a new matrix F ′.

• We let G = (E ′)∗F ′.

• We check whether G′ ∈ ±SL2(Z). If so, then E and F represent the
same point in the Serre tree.

This method is not very powerful, so we augment it with something better.

Enhanced Matching: Our enhanced matching method is pretty ad hoc.
The approach is to construct several lattices equivalent to E and then try
to match one of these with F using the simple matching algorithm. First
of all, given a vector U ∈ Z2 we let U∗ ∈ Z2 denote the vector U/u where
u is largest common odd divisor of the components of U . For instance, if
U = (12, 18) then u = 3 and U∗ = (4, 6). Let E be the span of U and V .

• E1 is the span of U∗ and V ∗. Call these vectors U1 and U2.

• E2 is the span of U1 and (U1 + V1)
∗.

• E3 is the span of U1 and (U1 − V1)∗.

The matrices E0, E1, E2 all represent the same point in the Serre tree. We
try to match F with each of these. The method succeeds if we get at least
one match. Like the simple method, this method is not guaranteed to work.
However, it does all our calculations for us just fine.
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5 The Technical Lemmas

5.1 Embedding a Single Tile

Here we prove Lemma 2.2. We denote geodesic segments in T2 and T3 by
their endpoints. Such segments will be denoted by square brackets. Thus
[E,F ]2 will represent a geodesic segment in T2. The words corresponding to
the 4 vertices of the quadrilateral τ discussed above are

• w0 = ∅

• w1 = A.

• w2 = ba.

• w3 = baa.

Here w0 is the empty word. This word acts as the identity on the space
X. Let Λ0 denote the level 0 lattice in the Serre tree.

w0(Λ0) =
([

1 0
0 1

]
,

[
1 0
0 1

])
. (9)

w1(Λ0) =
([

1 0
0 1

]
,

[
9 0
4 1

])
. (10)

w2(Λ0) =
([

64 0
44 1

]
,

[
9 0
0 1

])
. (11)

w3(Λ0) =
([

64 0
44 1

]
,

[
81 0
0 1

])
. (12)

These calculations give us the pitches advertised in §2.3. In X, all 4
vertices lie in the product[ [

1 0
0 1

]
,

[
64 0
44 1

] ]
2
×
[ [

9 0
4 1

]
,

[
81 0
0 1

] ]
3
. (13)

This is a 6× 6 flat Euclidean rectangle in X. This proves Lemma 2.2 for the
quadrilateral τ . Given that τ is a fundamental domain for the action of Γ
on H2, the action of Γ on X transitively permutes the sets of interest to us.
Hence, by symmetry, Lemma 2.2 holds for all of the parallelogram tiles. To
be sure, we also calculated the pitches for all 8 quadrilaterals in Figure 5.
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5.2 Embedding Adjacent Tiles

Here we prove Lemma 2.3. Let τ2 be the tile adjecent to τ1 = τ across the
red diagonal edge. The vertices of τ2 are v0, v3, v4, v5. We compute

w4(Λ0) =
([

64 0
44 1

]
,

[
729 0
0 1

])
. w5(Λ0) =

([
1 0
0 1

]
,

[
9 0
0 1

])
.

(14)
This time all the vertices of Ψ(τ1 ∪ τ2) are contained in the product[ [

1 0
0 1

]
,

[
64 0
44 1

] ]
2
×
[ [

9 0
4 1

]
,

[
729 0
0 1

] ]
3
. (15)

This is a flat 6×8 rectangle. The two flat rectangles Ψ(τ1) and Ψ(τ2) share
an edge and have the same shape. They either coincide or lie on opposite
sides of the same edge. Since they don’t coincide, they lie on opposite sides of
the same edge. Hence Ψ(τ1∪ τ2) is another flat parallelogram. By symmetry,
Lemma 2.3 holds for all tiles which are adjacent across a red edge.

Let τ3 be the tile in Figure 5 that is adjacent to τ1 across a blue edge.
The vertices of τ3 are v0, v15, v16, v1. We have

w1(Λ0) =
([

1 0
0 1

]
,

[
9 0
4 1

])
. (16)

w2(Λ0) =
([

64 0
44 1

]
,

[
9 0
0 1

])
. (17)

w3(Λ0) =
([

64 0
44 1

]
,

[
81 0
0 1

])
. (18)

w15(Λ0) =
([

4 0
3 16

]
,

[
81 0
76 1

])
. (19)

w16(Λ0) =
([

4 0
3 16

]
,

[
729 0
643 1

])
. (20)

All these vertices lie in the product[ [
64 0
44 1

]
,

[
4 0
3 16

] ]
2
×
[ [

729 0
643 1

]
,

[
9 0
4 1

] ]
3
. (21)

This works because 643 ≡ 76 mod 81 and 76 ≡ 4 mod 9. The same argument
as in the red case finishes the proof. This completes the proof of Lemma 2.3.
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