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Abstract

There are two main conjectures about paper Moebius bands. First,
a smooth embedded paper Moebius band must have aspect ratio at
least v/3. Second, any sequence of smooth embedded paper Moe-
bius bands having aspect ratio converging to /3 converges, in the
Hausdorff topology and up to isometries, to an equilateral triangle of
semi-perimeter v/3. We will reduce these conjectures to a finite num-
ber of statements about the positivity of certain piecewise algebraic
expressions. The reader should view this document as a set of research
notes rather than as a finished paper.

1 Introduction

A paper Moebius band of aspect ratio A is a smooth isometric embedding
I: My — R? where M, is the flat Mobius band

My = ([0,1] x [0, A])/ ~, (2,0) ~ (L —z,}) (1)

An early work [Sa] establishes the existence of paper Mobius bands. The
main question about these objects is the value of the smallest Ay such that
a paper Moebius band of aspect ratio A exists iff A > A\g. B. Halpern and C.
Weaver [HW] show that A\ € [7/2,v/3]. The book [FT, §14] gives an excel-
lent exposition of these bounds. The paper [CF] gives a general framework
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for understanding objects like smooth paper Moebius bands. See [AHLM],
[CKS], [HF], [MK], [GS] for work that is more or less related.
Halpern and Weaver make the following conjecture about Aq.

Conjecture 1.1 (Optimality) A smooth embedded paper Moebius band has
aspect ratio greater than /3. Hence \g = /3.

The upper bound A\g < v/3 is explained by an example. Figure 1.1 shows
an immersed polygonal paper Mobius band of aspect ratio exactly v/3.

rotate
—> —> —>

Figure 1.1: The conjectured optimizer

The final image is not embedded. It is an equilateral triangle of semi-
perimeter /3. However, for any € > 0, one can approximate this map by
smooth embeddings of My .. See [FT] for a discussion about this.

Here is an elaboration on the Optimality Conjecture:

Conjecture 1.2 (Rigidity) A sequence of smooth embedded paper Mobius
bands having aspect ratio converging to \/3 converges, in the Hausdorff metric
and up to isometries, to an equilateral triangle of semi-perimeter /3.

In [S2] we show that Ay > /3 — (1/26). The actual bound involves
a complicated algebraic number that is just slightly larger than this. For
comparison, /2 < v/3— (4/26), so our bound gets more than 3/4 of the way
to the conjectured optimal bound. We also proved a result * which contains
Theorem 3.1 as a subset.

In [FT] it is pointed out that (probably) the main difficulty in proving
the conjectures is figuring out how to use the topological hypothesis that
the paper Moebius band is embedded. Indeed, in [FT]|, the authors give an

!The result in Theorem 3.1 has a constant /3 — (1/24), which differs slightly from the
bound v/3 — (1/26). This is not a typo. The new constant refers to different objects.
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example of a sequence of immersed examples with aspect ratio converging to
/2. So, something more is needed. In this paper, which is a sequel to [S2],
we will reduce the Optimality and Rigidity Conjectures to a finite number
of purely geometric estimates.

All but four of the geometric estimates seem true by a fairly wide margin.
They reduce to statements that certain explicit piecewise algebraic expres-
sions are positive on either [0, 1]*° or [0, 1]'. These estimates all feed into our
main topological result, which we call the Topology Lemma. The remain-
ing four geometric estimates feed into a result which I call the Geometry
Lemma. These are more delicate because the case of the presumed optimizer
is a boundary case.

Here is the extent to which I have experimented with these calculations:

e [ have experimented extensively with the calculations which go into the
Topology Lemma, and I will detail these experiments in §7. These all
seem to work by wide margins.

e [ have experimented extensively with the two calculations which mirror
Cases 1 and 2 of the Geometry Lemma. These seem to work out.

e A third calculation, which would have finished Cases 3 and 4 of the
Geometry Lemma simultaneously, did not work. I replaced this one
calculation with two separate calculations, each of which more tightly
mirrors the corresponding case of the Geometry Lemma. I have not
yet experimented with these.

The estimates are all closely related to tensegrities. A tensegrity is essen-
tially a graph graph labeled with positive numbers. Some of the edges are
considered to be rigid, like metal rods, and some of the edges are considered
to be flexible, like pieces of rope. An embedding of the tensegrity is a map
from the graph into space so that the length of each wooden edge is exactly
equal to the label and the length of each rope edge is at most the label. See
[CB]| for a survey.

A paper Moebius bend behaves somewhat like a tensegrity. It is ruled by
a continuous family of line segments which, individually, are completely rigid.
These are like the wooden edges. The directions transverse to the bend lines
are like the rope edges; they are drawn together by the spatial embedding.
By remembering just a finite number of bends, we can approximate a paper
Moebius band by a finite tensegrity. The advantage is that we replace an



infinite dimensional space by essentially a projection onto a finite dimensional
space. The disadvantage is that we might be forgetting vital information.

Here is an overview of the paper. I have tried to structure the paper
so that you only have a read about 5 more pages before you see the overall
structure of the proof.

In §2 I prove the Optimality Theorem and the Rigidity Theorem modulo
two main results, the Geometry Lemma and the Topology Lemma. The
Geometry Lemma also works in the immersed case (with a side condition
concerning something called a T-pattern) and the Topology Lemma requires
an embedding. The rest of the paper is devoted to reducing these two results
to geometric estimates, most of which are handled by tensegrity calculations.

In §3 I recall some geometric estimates from [S2] and also prove a new one
along similar lines. The precise constants in these results are not important.
They mainly serve to give us some a priori bounds which help us set up the
limits and targets of our calculations.

In §4 I introduce the tensegrities which are used in the calculations.

In §5 I reduce the Topology Lemma to tensegrity calculations. The Topol-
ogy Lemma is a very natural statement which ought to have a traditional
proof, but I don’t know one.

In §6 I will reduce the Geometry Lemma to tensegrity calculations.

In §7 T will explain the extent to which I have experimented with the
calculations.

I have posted my computer code on my website:
http://www.math.brown.edu/~res/Java/MOEBIUS.tar

I would like to thank Dan Cristofaro-Gardiner, Dmitry Fuchs, Steve
Miller, and Sergei Tabachnikov for helpful discussions about this problem. I
would especially like to thank Sergei for telling me about the problem and
pointing me to his book with Dmitry. I would also like to acknowledge the
support of the Simons Foundation, in the form of a 2020-21 Simons Sabbat-
ical Fellowship, and also the support of the Institute for Advanced Study,
in the form of a 2020-21 membership funded by a grant from the Ambrose
Monell Foundation.



2 The Proof modulo Two Lemmas

In this chapter we recall some concepts and results from [S2] and then reduce
the two main theorems to two auxiliary lemmas, the Geometry Lemma and
the Topology Lemma.

2.1 Polygonal Moebius Bands

Here are some detinitions taken from [S2].

Basic Definition: Say that a polygonal Moebius band is a pair M = (A, )
where I : My — R? is an isometric embedding that is affine on each triangle
of a triangulation of M. We insist that the vertices of these triangles all lie
on OM,, as in Figure 1.1. Any smooth isometric embedding I’ : My — R?
can be approximated arbitrarily closely by this kind of map, so it suffices to
work entirely with polygonal Moebius bands.

Associated Objects: Let 01, ...,0, be the successive triangles of M.
e The ridge of §; is edge of 9; that is contained in OM,.
e The apex of 9; to be the vertex of d; opposite the ridge.
e A bend is a line segment of §; connecting the apex to a ridge point.
e A bend image is the image of a bend under I.
e A facet is the image of some §; under I.

We always represent M) as a parallelogram with top and bottom sides iden-
tified. We do this by cutting M), open at a bend. See Figures 1.1, 2.1, 3.1.
In what follows, we will be more specific about which bend we choose to cut
along.

T-Patterns: Say that a T-pattern is a pair of perpendicular coplanar dis-
joint bend images. figure 2.1 shows an example.

Now we explain one of the main results from [S2]. This result is the key
to our whole approach. The bound of 77/12 in the next lemma is larger than
V/3, so we always have this bound for the examples of interest.



Lemma 2.1 A polygonal Moebius band of aspect ratio less than 7w /12 has
a T-pattern.

Sketch of the Proof: A pair of perpendicular bend images is contained
in a pair of parallel planes. The small aspect ratio allows us to rotate the
image so that the bend images all make an angle of less than 7/4 with the
XY-plane. This property guarantees that the parallel planes just mentioned
never contain vertical line segments. We consider the space P of perpendic-
ular pairs of bend images. Generically this space is a topological 1-manifold.
We show that P contains a connected component K that is invariant under
the involution which swaps the pair of bend images. Starting with a pair
(cr, B) of bend images in K we consider a path to (3, a). The corresponding
pairs of perpendicular planes exchange their position and never contain ver-
tical line segments. Hence, at some instant along the path, they coincide. &

Standard Normalization and Tame Pairs: The T-pattern in our polyg-
onal Moebius band may not be unique, but we fix a T-pattern once and for
all. Let 8; and P2 be two bends whose corresponding images 57 = I(f;) and
B3 = I1(f2) form a T-pattern. Since these segments do not intersect, we can
label so that the line extending (35 does not intersect 8. We cut M, open
along J; and treat [, as the bottom edge. We now set 5, = 1 and 3; = [
and (re)normalize as in §2.1. So, §; connects (—B,0,0) to (0,0,0), and 3/
is a translate of the segment connecting (0,0,0) to (0,7,0). This translate
still lies in the XY -plane. Here B and T are the lengths of these segments.

Figure 2.1: The standard normalization



The left side of Figure 2.1 shows M,. Reflecting in a vertical line, we
normalize so that L; > R;. This means that Lo > Ry. We set

Sj - L]’ + Rj- (2)

We call this the standard normalization. We set A(11,72) = (S1 + S2)/2 be
the aspect ratio of the underlying polygonal Moebius band. We insist that
A < V341071 and we call (71, 72) a tame pair. We add this tiny constant
because, for the Rigidity Theorem, we will need to consider examples having
aspect ratio slightly larger than /3.

The right side of Figure 2.1 shows the T pattern, and the corresponding
images of the sets on the left under the isometry I. The wiggly curves we
have drawn do not necessarily lie in the XY-plane but their endpoints do.
We normalize so that (0,0,0) is the right endpoint of the B-bend image. In
the figure (z,y) denotes the vector which points from the white to the pink
vertex on the right side. We have blown this part of the figure up to make it
more visible.

Remark: Actually, there are two such standard normalizations. We can
make the replacements M, — pi(My) and I — py o [ o py, where p; is
reflection in the midpoint of M), and py is reflection in the X-axis. This
change preserves all our normalizations, and gives us the pair (72, 71). Aside
from swapping the names of the variables, the only thing that happens to
Figure 2.1 is that the vector (x,y) changes to (x,—y). This trick lets us
interchange the roles of the indices in various arguments. So, if we prove a
certain statement for (71, 75) then we get the same result for (75, 71).

2.2 Special Bends

We did a lot of numerical experiments and these led to the definitions we
give here. Without these experiments, the definitions would seem very un-
motivated.

Pitch: Given a polygonal Moebius band with a T-pattern, we use the stan-
dard normalization. For each bend § we let 8* = 7o I(), the projection of
the bend image I(() into the XY -plane. Each bend g of 7, has associated
to it an angle 6 € [0, 7] such that when we rotate the positive X-axis coun-
terclockwise by 0 we arrive at a ray parallel to 8*. We call 0 the bend pitch.



Four Special Bends: Let (k); stand for a bend /5 of 7, whose bend pitch
is +km/12. Let (k)q stand for a bend § of 75 whose bend pitch is —km/12.
We insist that (0); = (0)2 = (0) is the bottom bend and (6); = (6)2 = (6) is
the top. We are interested in bends (0), (1);, (4);, (6) for j = 1,2. We pick
(1); and (4); to be the bends nearest (0) and (6), respectively, which satisfy
the conditions. Let m be projection into the XY-plane. We illustrate our
notation with an example:

(4)7 = mo I((4)1) (3)

~

Figure 2.2: The 4 special bends and the yellow tips.

Tips and Bumps: We define the 1-tip of 7 to be the right endpoint of
(1);. We define the 4-tip of 7; to be the left endpoint of (4);. These are the
yellow vertices in Figure 2.2. Let A be the convex hull of the T-pattern. We
say 77 has a k-bump if the k-tip lies outside A. We make 2 more definitions:

e When ¢ # j we write 7, = 7; if some bend X of 7; is such that X*
contains the k-tip of 7;.

e We write 7, —1 73 if some bend X € [4,6]; is such that X* contains
the 1-tip of 7.



2.3 The Two Main Lemmas

Suppose we have a polygonal Mobius band of aspect ratio less than
\/g 4 107100.

In the first result we assume that M has a T pattern but we do not assume
that M is embedded. In the second result we require that M is embedded.

In either case, M has a T patterm. Let (7, 72) be the associated tame
pair. For the sake of working with closed subsets of objects, we allow the
limiting case when the horizontal and vertical segments (0)* and (6)* touch.
That is, we allow (0,0, 0), the right endpoint of (0)*, to lie in (6)*.

Here is the main topological component of the proof. In this result we
insist that M is embedded.

Lemma 2.2 (Topology) Suppose that (11,7) is a tame pair corresponding
to an embedded polygonal Moebius band. Then at least one of 4 things is true.

T —1 T1, To =21 T1, T1 —4 T2, Ty —74 T1.

In the next result, which is purely geometrical, we do not assume that M
is embedded. However, we do insist that M has a T-pattern, as above.

Lemma 2.3 (Geometry) Suppose that (11, 72) is a tame pair.
1. If 4 =1 71 then Sy > /3.
2. If 9 —4 11 then S1+ Sy > 2/3.
3. If 1 —1 170 and 75 —1 71 then S; + Sy > 2/3.
4. If 7\ =1 ™ and 7 —1 71 then Sy + S > 2/3.

Moreover, for any € > 0 there is a 6 > 0 such that if we have equality within
d in any of the cases, then (0)* U (6)* is within € of an equilateral triangle of
perimeter 2v/3 in the Hausdorff metric.

There is a symmetric result. Switching the roles of the indices, we get
the same result when 75 —; 7, etc. Thus, any of 8 hypotheses lead to the
conclusion in the Geometry Lemma.



2.4 Proofs of the Main Results

Given an immersed polygonal Moebius band with a T-pattern, we get a tame
pair (71, 7) provided that the aspect ratio satisfies A < v/3 4+ 1071, Most
of this chapter is devoted to proving the following result.

Proof of the Optimality Theorem: If we have an embedded polygo-
nal Moebius band of aspect ratio less than v/3 then we cut it open along the
bends corresponding to a T-pattern. This gives rise to a tame pair (71, 72)
with S; + Sy = A\(71,7) < 2v/3. We can order so that S, < /3. From the
Geometry Lemma, it is impossible that 7, — 7.

The Topology Lemma, applied to the pair (79, 71), leaves 3 possibilities:

1. T1 —?4 T2.
2. To —>4 T1.
3. T1 —4 T2.

The Geometry Lemma rules out Cases 1 and 2.

Consider Case 3. Suppose 1, — 75. Given the cases we have already ruled
out, the the Topology Lemma applied to (71, 72) tells us that, additionally,
either 1 — 7 or 79 — 7. The Geometry Lemma now rules out these two
cases. @

Proof of the Rigidity Theorem: Suppose we have a sequence of Paper
Moebius bands whose aspect ratios converge to v/3. The Topology Lemma
applies for all examples sufficiently far along the sequence and thus we get a
sequence {(7,.1,Tn2}) of tame pairs. By the Geometry Lemma, the convex
hull A of the T pattern converges (modulo global isometries of R?) to the
equilateral triangle Ay of perimeter 2v/3. Since the length of the boundary
I(0M,) is at least as long as the perimeter of A, we see that this boundary
must in fact converge in the Hausdorff Topology (modulo global isometries)
to this same triangle Ay. This proves the Rigidity Theorem. &
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3 A Priori Bounds

Theorem 3.1 and Lemma 3.2 are the main results in this chapter. The reader
anxious to get to the main points should skip the proofs in this chapter and
just use these results as black boxes. The precise statements of these results
are not that important. We just need some a priori bounds to frame our
calculations.

3.1 Geometric Bounds

Let A be the convex hull of the T-pattern I(T') U I(B). Let b denote the
slope of the B-bend and let ¢ denote the slope of the T-bend. Figure 2.1
shows b but not t. Let  denote the set of pairs (b,¢) which can arise in a
standard pair with A < v/3. Figure 4.1 shows a plot of Q2 in blue, as well as
a quadrilateral €2 which we showed contains €2.

b

(0,-1/V3) < >
Figure 3.1: The range of slopes.

The following results are a subset of the main result in [S2, §4].
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Theorem 3.1 For any immersed paper Moebius with a T -pattern and aspect
ratio less than /3, the following is true.

1..8; >3 —(1/24) for j=1,2.
2. x < 1/18 and |y| < 1/30.

2. QcQ.

Sketch of the Proof: The distances relations in Figure 2.1 give rise to 3
constraints:

L Ry > /22 +(T/2 = y)* and By > v/a? + (T/2 +y)”.

2. L1 > \/(B+x)2+ (T/2+y)? and Ly > \/(B+ )2+ (T/2 — y)2.
3. B> — L} 4 (T'— Rj)*> <0 for j =1,2.

Constraints 1 and 2 follow directly from the Pythagorean Theorem. Con-
straint 3 comes from a more subtle argument involving the Ridge Curve,
which we define later in this chapter. We give the argument in [S2].

We also have the following relations:

S+b—1 S—b+t
p=SHbt R SIMHL po TR T VIR @
Plugging these relations into our various constaints and doing some calculus,
we arrive at the statements in Theorem 3.1. &

3.2 Angle Range Bounds

Now we prove a new result, similar in spirit to Theorem 3.1. This new result
also helps frame our calculations by giving a priori bounds.

Let the interval [0, 1]; denote all the bends in the trapezoid 7, that inter-
polate between 0 and 1;. Let ©([0,1];) denote the range of bend pitches for
bend images in [0, 1];. (We make similar definitions for the other intervals.)
The initial bend image (0)* has bend pitch 0. The final bend image (1;)* has
bend pitch 7/12. It is tempting to guess that ©([0,1];) = [0, 7/12] but, since
the bend pitches need not vary monotonically, we cannot conclude this. In
this section we establish the following bounds.

12



Lemma 3.2 Let 0y = w/30. For any tame pair (11, T2) of trapezoids,
1. ©([0,1]y) C [0, 7/12].
2. 9([0,4]1) C [—bo, 47/12 + 6y].
3. O([4,6],) C [A/12,7/2 + 6,).

Remark: One consequence Lemma 3.2 is that any bend in 71 has pitch in
[—0o, /2 + 0p]. This is a more precise version of the statement above that
the pitches essentially lie in [0, 7/2] except for a bit of slope at either end.

The rest of the chapter is devoted to proving this result. The technique
used here is not used anywhere else in this paper, though we used it exten-
sively in [S2]. At this point, the reader can use Theorem 3.1 and Lemma
3.2 as black boxes. Again, they only serve to place a priori bounds on our
tensegrity calculations.

3.3 The Ridge Curve

Here we recall some more notions from [S2].

The Sign Sequence: Let dy,...,0, be the triangles of the triangulation
associated to M, going from bottom to top in P,. We define pu; = —1 if 9;
has its ridge on the left edge of P, and +1 if the ridge is on the right. The
sequence for the example in Figure 1.1 is +1, —1,+1, —1.

The Core Curve: There is a circle v in M, which stays parallel to the
boundary and exactly 1/2 units away. In Equation 1, this circle is the image
of {1/2} x [0, A] under the quotient map. We call I(~y) the core curve.

The left side of Figure 3.2 shows M, and the pattern of bends. The
vertical white segment is the bottom half of . The right side of Figure
3.2 (which has been magnified to show it better) shows () where 7 is the
colored half of M,. All bend angles are m and the whole picture is planar.
The colored curve on the right is the corresponding half of the core curve.
Incidentally, for 7 we have L + R = 1.72121... < V3.

13



Figure 3.2: The bend pattern and the bottom half of the image

The Ridge Curve: We show the picture first, then explain.

Figure 3.3: Half of the core curve (red/blue) and half of the ridge curve
(black). The core curve is scaled up by a factor of 2.

14



Let 3, be the bottom edge of the parallelogram representing M,. We
normalize so that I maps the right vertex of 5 to (0,0, 0) and the left vertex
to (—B,0,0), where B is the length of 3,. Let Ej, ..., E, be the successive
edges of the core curve, treated as vectors. Let

Let I' be the curve whose initial vertex is (B,0,0) and whose edges are
I, ..., I Here uy, ..., i, is the sign sequence.

" has length 2\, connects (B,0,0) to (—B,0,0), and is disjoint from the
open unit ball. The lines extending the sides of I'" are tangent to the unit
sphere. We rotate so that I contains (0,7, 0) for some 7" > 1. If we cone I to
the origin, we get a collection Ay, ..., A, of triangles, and A, is the translate
of p;1(9;) whose apex is at the origin. In particular, the vectors pointing to
the vertices of I' are parallel to the corresponding bend images. Figure 3.3
shows the portion of the ridge curve (in black) associated to the example in
Figure 2.1. We have also scaled the core curve by 2 and translated it to show
the relationships between the two curves.

3.4 Proof of Lemma 3.2

Let us dispense with a representative case first. The reason why ©([0,1];)
ends at 7/12 rather than /12 + 6 for some positive 6 is that we take (1); be
the first bend after (0); with pitch 7w/12. Similar remarks apply to the other
cases where we have no slop over the endpoint in the bound.

Now we consider the other cases. Let I'; be the portion of the ridge curve
associated to 7. The curve I'; connects (B,0,0) to (0,7,0). This curve
perhaps does not stay entirely in the positive sector consisting of points
(x,y,z) with z,y > 0, but it certainly does not “go around the back”. For
instance, the projection 7(I'y) avoids the ray of slope 1 which starts at (0, 0)
and goes through (—1,—1). Here 7 is projection into the X'Y-plane.

Let II; and II, be two planes in R* which contain the Z-axis. Suppose
that the dihedral angle between II; and Il is . Suppose these planes are
ordered so that I';y must hit II; before hitting II;. We give a lower bound on
the length if I'; goes from (B,0,0) to a point p € Ily, to a point g € II; to
(0,7,0). Figure 3.4 shows what II(I';) would look like in several cases.

It is worth pointing out that I'; lies outside the open unit ball, but (T';)
does not necessarily lie outside the open unit disk. The shaded region in
Figure 3.4 is one quarter of the unit disk.
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Tl'2 Trl R,R,(0,T)

,q=(0,T)

(B,0)

Figure 3.4: Projection of the ridge curve.

Let ¢, denote the length of I'y. Let R; denote reflection in II;. We write
[y =T U2 UTy3, where I'y; goes from (B,0,0) to p and T'y5 goes from p
to ¢ and I'13 goes from ¢ to (0,7,0).

The continuous path

FT - Fll U RQ(F:[Q) U Rle(Flg)

has the same length as I'; and connects (B,0) to RyR1(0,7,0). This latter
point lies in the XY plane and makes an angle 20 with the Y-axis, as shown
(projected into the XY-plane) on the right side of Figure 7.2. But then

0 = |03 > (r/2) + 26. (6)

Let /5 denote the length of I'y, the portion of the ridge curve associated
to 7. From Theorem 3.1 we have ¢; < /3 + (1/24). Combining this with
Equation 6, we have

20 < V3 + (1/24) — (7/2) < 7/15. (7)

Hence 6 < 7/30. If one of our estimates failed, I'; would make exactly the
kind of path just studied, where the angle 6 between II; and II, would be
0 = m/30. This is a contradiction. &
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4 Tensegrities

4.1 Trapezoids and Capacities

We first mention a general property of our notation. For any object X in the
plane X’ will be the image of X under some kind of piecewise linear map to
R?. Suppose that

Q = (Q07Q17Q27Q3)7 Q/ = (QB)QIDQ,Q: Qé)

are as follows: @) is a trapezoid in the plane having vertical sides and width
1 and @' is a quadrilateral in R®. Figure 4.1 shows @. The numbers indicate
the labeling of the vertices of ().

3

1
Figure 4.1: The quadrilateral tensegrity.

Let dij = ||Q; — Qyl. Let di; = ||Q; — Q%[]. We define the height of Q
to be the sum of the vertical edge lengths of @), namely dyps + di3. We call
the pairs (Qo, Q1) and (Q2, Q3) the bends and we call the pairs (Qf, @}) and
(@5, Q%) the bend images. This lines up our discussion here with Figure 2.3.

We say that (Q, Q') is a plain tensegrity pair if d;j > d;; for all the edges
of @, with equality for the pairs (0,1) and (2,3). So, we have 2 equalities
and 6 inequalities. We define the capacity of @)’ to be the minimum height
of @ where (@, Q) is a tensegrity pair. We denote this by x(Q’).

17



4.2 Compound Tensegrities

This time let ¥ = (Qf, ..., @%_,) be a collection of k quadrilaterals in space.
We call k the complexity. We have

Q; = (Q;‘,Oa Q;’,lu ij,27 Q;’,S)? ] = 07 ceey (k - 1)
We insist that these quads abut, in the sense that

Qj,z = Qj+1,0> Qj,a = Qj+1,1, J=1. (k - 2)'

When these conditions are satisfied, we call ¥ a compound tensegrity. We
will always take & = 2 here.
We call ¥’ cyclic if, additionally,

Qk—l,O = QO,I; Qk—l,l = Q0,0' (8>

The mismatch of the indices is deliberate, and is designed to reflect the
structure of a Moebius band. When ¥’ we will take k = 4.
In either case, we define

K(W) = 3 K@), )

Suppose now that (71, 72) is a tame pair (or indeed any pair) of trapezoids
coming from the process of cutting a polygonal Moebius band open along the
bends corresponding to a T-pattern. Suppose we choose a finite number of
additional bends 11, ..., 81 %,—1 in the interior of 7, and By, ..., B1,k,—1 in the
interior of 75. Then we can get a compound tensegrities in 3 ways:

e Weset 31y = band 31, =t and then let ); be the quadrilateral whose
vertices are the endpoints of 1((y,j) and I(51,j + 1) with the vertices
labeled as in Figure 4.1. Then Qo, ..., Qk, 1 is a compound tensegity.
Here b and ¢ are the bottom and top bend of 7. Call this V.

o We set 0 =t and f, = b’ and then repeat the same construction.
Here V' is the top of 7 which is parallel to b. Call this Wy,

e We can take the concatenation W' = W}, W), of the previous two tenseg-
rities. This gives us a cyclic compound tensegrity.

Here is the key inequality:
Sy > k(0)), Sy > k(0)), M1, 70) > k(). (10)
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4.3 The Essential Part

In some situations we will have occasion to work with a cyclic tensegrity of
complexity 4 in which the first 3 trapezoids deserve to be considered on their
own. We say that the essential part of the tensegrity is the union of these 3
trapezoids. When we consider the essential part, it will correspond to 7, and
the remaining trapezoid will be 5. Here (71, 73) is the tame pair associated
to a polygonal Moebius band of aspect ratio less than v/3 + 10719 which has
a T-pattern.

4.4 Reduced Capacity

We defined the capacity x in terms of Figure 4.1. We define a simpler and
potentially smaller invariant & in terms of the tensegrity which ignores the
diagonals. In other words, referring to the discussion surrounding Figure
4.1, we simply drop the requirement that dj; > di; for (i,j) = (1,2) and
(7,7) = (0,3). We have & < k and sometimes there is strict inequality. The
invariant ® is much simpler than k. We obviously have ¥ < k. Sometimes
the inequality is strict and sometimes it is not. Algebraically, the reduced
capacity is much nicer to work with. In most cases, it suffices to use the
reduced capacity but in a few cases the results for x are true by much wider
margins than they are for %.
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5 The Topology Lemma

In this chapter we reduce the Topology Lemma to tensegrity calculations.
We first prove the Topology Lemma under a condition we call Topological
Goodness. Following this, we reduce topological goodness to a property we
call Geometrical Goodness, a purely geometric property. We then reduce
Geometrical Goodness to tensegrity calculations.

5.1 Topological Goodness

Given 2 bends 1 and [y we write 1|5y if 57 and 5 intersect in a point that
is interior to both. Assuming that (;|52, we write 8; 1 By if the vertical line
through 57 N 35 intersects I(f;) above where it intersects I(f;). Otherwise
we write 81 | B2. We must have one or the other when we have an embedded
Mobius band. We will encode the information below in a picture reminiscent
of a knot diagram.

We call (1, fs,B3) a topologically bad triple triple if the crossings are
inconsistent in one of two ways:

e 511 B2and B | Bs.
e 51l Brand B 1 Bs.

Otherwise we call the triple topologically good.

Good Pairs: We say that the pair (71, 7) is topologically good if:

0)I(4); and (1):](4); and (4):](4)2.

- (

2. (4;,14,0) is topologically good.
(
(

H

3. (11,4;,6) is topologically good unless 7; —; 7.

4. (43-;,4;,0) is topologically good unless 7; —4 T5_;.

Here j = 1,2 in all statements.

Our next result proves the Topology Lemma under the assumption that
we have a topologically good pair. The basic idea is that various topologi-
cal crossing diagrams are impossible under the assumptions above, and this
forces the desired incidences.
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Lemma 5.1 The Topology Lemma holds for topologically good pairs.

Proof: Suppose first that (1)} and 6* do not cross. Since (1);](4), there is
by continuity some 8 € [4,6]; such that 5* contains the 1-tip of (1)}. This
means that m — 7.

Henceforth we assume (1);](6). We normalize by an ambient isometry so
that (1); { (6). Figure 5.1 shows the 4 possibilities.

1 2

/. /.
—— |7

s

Figure 5.1: Four possibilities

Case 1 has the topologically bad triple (41,17,0), so this case cannot
happen. Cases 2 and 3 have the topologically bad triple (1;,44,6). Hence
71 —1 71 in these cases. This leaves Case 4.

Let us explore Case 4 in more detail. Figure 5.2 shows the situation.
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Figure 5.2: Four possibilities

In Case 1 we have left 2 crossings undetermined and we place an = by
the crossing we study. If the crossing is as appears, then (41,4,,0) is a
topologically bad triple. But then 7 —4 7.

In Case 2 we are working on the next crossing, and we still leave one
undetermined. This has the same structure as Case 1 but with the indices 1
and 2 reversed. Hence 7 —4 7 here.

In Case 3, the situation is impossible because (45, 11, 0) is a topologically
bad triple.

In Case 4, the triple (11,42, 6) is topologically bad. Hence 75 —1 71. #
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5.2 Geometrical Goodness

Here we give conditions under which the pair (71, 72) is topologically good.
We call the triple (31, 52, f3) of bends geometrically good if B;|f for all bends
[ that interpolate between (8, and 3. Since the space of bends is topologically
a circle, we we have to be careful about what we mean here. We never allow
our bends in an interpolating family to cross the bend labeled 7" on the left
side of Figure 2.1. In the next result, we have our standard normalization.
We call (11, 79) geometrically good if the various conditions on the triples
in the definition of topological goodness hold with the word geometrically
replacing the word topologically in every instance.

Lemma 5.2 (71, 7) is topologically good if (11, T2) is geometrically good.

Proof: For a given triple, the implication “geometric implies topological”
works the same way in all cases. We just consider two representative cases.

- /
—_ )

(0)F

() (4);

Figure 5.3: A topological contradiction.

First look at the left half of Figure 5.3. Consider the triple (4;,11,0). In R?,
as we sweep the blue (/) over to the blue I(0) we end up on the wrong side
of the red I(4;). The geometrical goodness prevents the crossing type from
changing.

Now look at the right half of Figure 5.3. As we sweep the blue I(4)
over to the blue I(6), we get the same contradiction as in the previous case,
except that now the crossing can change if the projection of one of the blue
segments in our sweepout contains the right endpoint of (1);. In other words,
(13,44, 6) is topologically good unless 7 —1 7. #
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5.3 The Cyclic Tensegrities

Our approach to establishing geometrical goodness involves 2 calculations
with cyclic tensegrities of complexity 4 and a whole bunch of calculations
with compound tensegrities of complexity 2. We first explain the two cyclic
tensegrities of complexity 4. Since we will have occasion to use similar cal-
culations for the Geometry Lemma, we will introduce a somewhat general
framework.

We describe 2 closely related families of complexity 4 cyclic tensegrities.
The input for both families is an index h € {0, 1} and a pair ©4, © of (angle)
intervals as in the proof of Lemma 3.2. One of the angle intervals is a point
and one is a nontrivial interval.

We use the notation from the previous chapter, so that {Q;;} is the list
of points in the domain and {Q;;} is the list of points in the range. We have
the bend images

ﬂg, = Q;’,OQ/‘J
for 5 = 0,1,2,3. Let m be projection into the XY-plane. Recall that the

pitch of B is the angle that 7(5’") makes with the X-axis.
The family F(h, ©1,0,) is the set of tensegrities such that:

e [y U B4 is a T-pattern, with 7(3)) horizontal and 7(35) vertical.
° ﬁ; has pitch in the interval ©; for j = 1,2.
e 7(/3}) contains the point m(Q1 ).

This family corresponds to a situation where we focus on two auxiliary bends
both lying in the trapezoid 71, the lower half of our polygonal Moebius band.
For later use, we define the essential part of a member of F to be the com-
plexity 3 tensegrity made from the union of the bottom 3 trapezoids. The
essentially part corresponds to 7.

The family G(j, ©1, ©3) is defined in the same way as F except that the
indices 2 and 3 are swapped. Thus, for instance ) U £, make a T-pattern.
The F encodes the situation where we focus on two bends contained in 7
and the family G encodes the situation where we focus on two bends, one
contained in 7; and the other contained in 7.

Now we mention the two calculations. Each of these calculations involves
the positivity of some 14-dimensional piecewise algebraic expression.
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1. All members of F(0, [47/12, 47 /12], [—0y, +7/12], 47 /12) have reduced
capacity greater than 2v/3.

2. All members of G(0, [47/12,47/12], [—7 /12, +6,], 47 /12) have reduced
capacity greater than 2v/3.

Figures 5.4 and 5.5 represent two members of each family described above.

Figure 5.4: The Constraints for Cyclic Calculation 1.

Figure 5.5: The Constraints for Cyclic Calculation 2.
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5.4 The Compound Tensegrities

Now we discuss the remaining tensegrity calculations. These involve com-
pound tensegrities of complexity 2.

A prism is a set of the form P x R, where P C R? is an open convex
polygon. The prism is the intersection of finitely many halfspaces whose
boundaries project to lines in the XY-plane. We call these halfspaces the
defining halfspaces. In general, we say that a halfspace whose boundary
projects to a line in the XY-plane is a prism halfspace.

Our calculations all involve compound tensegrities with 2 quadrilaterals.
Given such a tensegrity Y’, we let 0(Y") denote the pitch of the middle bend
image )},Q};. Here are the constraints.

1. The horizontal and vertical bends make a T-pattern.
2. 0(Y") € © C [—by, /2 + 6], for some interval O.
3. A selected endpoint of the middle bend lies in the prism halfspace H.

Again, 0y = 7/30 as in Lemma 3.2.
For various choices of (©, H) the calculations, if valid, show

k(T > V3 + 2—14 + 107100,
We call (4,0, H) an excluder. Suppose that (7,0, H) is an excluder. Sup-
pose (11, T2) is a tame pair and (/) is a bend image associated to 7 having
pitch in ©. Then the relevant endpoint of (/3) cannot lie in H. Here is the
argument. The calculation above, applied to T/ = W}, shows that if this
fails then S; > /3 + i + 10719 On the other hand, Theorem 3.1 gives us
that Sy > v/3— . But then A(m, 72) > V3410719 contradicting tameness.

Confining Pairs: We say that a prism pair is a pair (P;, P;) of disjoint
prisms. We say that this pair confines a line segment if one endpoint of the
line segment lies in P, and the other lies in . Let Hj,..., H;, be the
closed complements of the defining halfspaces for P;. For fixed © we set up
calculations which would show that (j,©, H;;) is an excluder for all relevant
indices. This shows that (P, P») confines the middle bend image I(3) as-
sociated to (71, 72) provided that and pitch 6 of the middle bend lines in ©.
We abbreviate this by saying that (P, P;) is a © confiner.
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The Main Examples: Now we describe the Confiner Calculations we need
in order to establish Geometrical Goodness. In all cases we use the ordinary
capacity (as opposed to the reduced capacity).

Figure 5.6 shows 6 regions in the plane. These regions are projections of
prism pairs. The red and green regions are interchanged by reflection in the
X-axis. As always, we show the projection to the XY-plane. The circle in
the picture denotes a place where the pieces are actually disjoint but look
tangent. The green piece is entirely below the line extending the bottom
edges of the blue piece.

(0,1,1,1)

(0,1,-1,1)

Figure 5.6: Confining prisms

Figure 5.7 shows some new regions. The blue regions in Figure 5.7 are
the same as in Figure 5.6. The magenta regions are reflections of the blue
regions in the X-axis.

01,11)

(0,1,-1,1)

Figure 5.7: Confining prisms
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The red regions in Figure 5.8 are the same as in Figure 5.6.

(0.1,1.1)

(0,1,-1,1)

Figure 5.8: Confining prisms

Motivated by Lemma 3.2, we define
Op1 = [—bo, /12|, Oy = [47/12,47/12],
Ou = [47/12,67/12 + 6y], Ooy = [—0o, 47/12 + by). (11)
The notation is such that ©([¢, j|;) C ©;;. Here are the calculations.
1. The green prisms are a Oy confining pair.
2. The blue prisms are a Oy, confining pair.
3. The cyan prisms are a Oy confining pair.

4. The orange prisms are a Oy, confining pair.

5.5 Establishing Geometrical Goodness

Now we deduce Geometrical Goodness from the truth of the calculations
above.
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Lemma 5.3 The triple (41,11,0) are geometrically good.

Proof: Our argument refers to Figure 5.6. Call a segment red if it has
one endpoint in the interior of one red region and the other endpoint in
the interior of the other. Likewise define green segments and blue segments.
Looking at Figure 5.6, we see that a green segment fails to cross a blue
segment only if the line extending the green segment lies to the right of the
entire blue segment.

At the same time, the conclusions from Cyclic Calculation 1 say that the
right endpoint of a blue segment cannot lie in the line extending a green
segment. The green segment is always (4)} and the blue segment can be any
pg* with 5 € [0,1];. But g* varies continuously. Hence, from what we have
already said, either 8* crosses (4)7 for all choices of 5 or for none of them.
But (0)*, which is just the horizontal bend, definitely crosses the green seg-
ment. Hence all the blue segments cross the green segment. This shows that
(41,14,0) is geometrically good. &

Corollary 5.4 The triple (42,15,0) is geometrically good.

Proof: This follows from the previous case and symmetry. We just inter-
change the roles played by the indices. #

Lemma 5.5 The triple (42,11,0) is geometrically good.

Proof: This is the same argument as in the proof for (4, 11,0) except that
we use red in place of green and Cyclic Calculation 2 in place of Cyclic Cal-
culation 1. Note that Cyclic Calculation 2 gives bounds on the bend 4; and
also the bends in [0, 1], rather than the bend 4, and the bends [0, 1];. so we
really are using the statement that is exactly like the Cyclic Calculation 2
except with the roles of the indices interchanged. #

Corollary 5.6 The triple (41, 15,0) is geometrically good.

Proof: Symmetry. #

Summarizing the results above, we see that (4;, 1;,0) is good for all indices
i,7 €{1,2}.
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Lemma 5.7 (1;,4;,6) is geometrically good unless 7; —1 ;.

Proof: By symmetry, it suffices to take 7 = 1. This time our argument refers
to Figure 5.7. Looking at Figure 5.7, we see that a blue segment crosses a
green segment unless the line extending the green segment lies to the right of
the blue segment. We have already shown that (1)7 and (4)] cross. Consider
the continuous family of segments of the form g*, where § sweeps through
[4,6]1. The first segment crosses (1);. Therefore, from what we have observed
about blue and green segments, either every 8* crosses (1)f, or one of them
contains the right endpoint of (1)f. In this latter case, we have 7 —; 7 by
definition. Hence (11,44, 6) is geometrically good unless 7 —1 7.

By symmetry, any segment of the form * with 8 € [0, 1], is magenta.
The same argument as above, with magenta replacing blue, implies that
(12,44,61) is good unless 71 — 7. @

In this result we take 7 # j.

Lemma 5.8 The triple (4;,4;,0) is geometrically good unless T; —4 ;.

Proof: If suffices to take + = 2 and j = 1. Our argument refers to Figure 5.8.
Note that an orange segment always crosses a red segment unless that line
extending the orange segment lies above the red segment. We have already
seen that 4;|4;. The same argument as in the previous lemma shows that
(42,41,0) is geometrically good unless 71 —4 7. #

This covers all triples we need to consider in order to establish Geoemtri-

cal Goodness for a tame pair (71, 7) of trapezoids. This completes our re-
duction of the Topology Lemma to tensegrity calculations.
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6 The Geometry Lemma

6.1 Three Cyclic Tensegrity Calculations

We first describe an approach which does not quite work. The following three
calculations imply the Geometry Lemma.

e The essential part of every element of F (0,7 /12, [47/12,67/12 + 6])
has reduced capacity at least v/3. Equality occurs only when the convex
hull of the T-pattern is an equilateral triangle of perimeter 2v/3.

e Every element of G(1, —47/12, [—6y, 7/2]) has reduced capacity at least
2v/3. Equality occurs only when the convex hull of the T-pattern is an
equilateral triangle of perimeter 2v/3.

e Every element of G(0,7/12, [67/12—60y, 87 /12]) has reduced capacity at
least 2v/3. Equality occurs only when the convex hull of the T-pattern
is an equilateral triangle of perimeter 2v/3.

I call these statements Calculations 1,2 and 3’. Figure 6.1-6.3 show typ-
ical members of each of the families above. On the left hand side of each
picture, we are emphasizing the bend images. On the right hand side, we are
emphasizing a kind of perimeter. The length of the black curve on the right
is less or equal to the reduced capacity of the corresponding tensegrity.

Figure 6.1: The constraints for Calculation 1
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Figure 6.2: The Constraints for Calculation 2

Figure 6.3: The Constraints for Calculation 3’

After a lot of experimentation, I think that Calculations 1 and 2 work.
The inequalities really are true. (I would not bet my life on it, however.)
Calculation 3’; if true, would take care of Cases 3 and 4 of the Geometry
Lemma at the same time. Unfortunately, Calculation 3 does not work. I
found members in the family above which have capacity less than 21/3. When
I use the reduced capacity these are easier to find, but they also occur with
the non-reduced capacity.

A variant of Calculation 3’ seems to work. The capacity of the essential
parts of members of G(...) seems always greater than v/3. Unfortunately, the
third trapezoid is associated to 7, and not 7y, and this estimate would not
help us even if true.
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6.2 The Last Two Calculations

The last two calculations, which I call Calculations 3 and 4, involve more
complicated tensegrities. They are the replacement for the failed Calcula-
tion 3’. Since I have not yet coded these up yet, I will just explain these
calculations schematically. To rule out the possibility that m —; 7 and
79 —1 71 we work with a cyclic tensegrity of complexity 6 tensegrity, as
suggested by Figure 6.4.

Figure 6.4: Schematic picture for Calculation 3

In the tensegrity, the following conditions hold:

e The bends labeled 0 and 6 correspond to the T-pattern, as in all the
other tensegrities.

e The bends labeled 1; and 15 correspond to bend images which have
pitch 7/12 and —7 /12 respectively.

e The bends labeled b; and by correspond to bend images which have
pitch in the intervals [47/12,67/12 + 6y and [67/12 — 6y, 87/12] re-
spectively.

e The right endpoint of 17 lies in b5. These are the planar projections of
the corresponding bend images.

e The right endpoint of 15 lies in b]. These are the planar projections of
the corresponding bend images.
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In a sense this tensegrity is like two interlocking copies of the tensegrity for
Calculation 3’ above. The calculation we would hope to make is that any
tensegrity like this has capacity at least 2v/3, with equality if and only if the
configuration corresponds to the presumed optimizer.

Now I will explain schematically how to rule out that possibility that
71 —1 7 and 7 — 7. Figure 6.5 shows a picture like the one in Figure
6.4, except that ordering of the bends and the incidence relations are a bit
different.

0

Figure 6.5: Schematic picture for Calculation 4.

There are actually 3 different tensegrity patterns we would need to con-
sider.

e The right endpoint of 17 lies in b} for ¢ =1, 2.
e The right endpoint of 15_; lies in b fo 7 =1, 2.

e b; = by = b and the right endpoints of 17 lie in b* for ¢ = 1,2.
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7 Numerical Computations

7.1 Parametrizing Tensegrities

For our calculations we want to parametrize the set of all tensegrities which
satisfy certain constraints. There is a tradeoff between the simplicity of the
parametrization and the efficiency of the calculation. The simplest approach
is just to string out all the coordinates of the vertices and realize the set of
interest to us as a subset of a giant and high dimensional cube. This leads
to very inefficient calculations. We describe a more complicated approach
which does better.
We define
t(a,b,r) =(1—=r)a+rd. (12)

We can think of «(a, b, *) as being a map from [0, 1] to the interval [a, b]. We
will use this map repeatedly.

The Bends: The tensegrities we consider have either 3 or 4 bend images
Let us say that there are ¢ 4+ 1 bend images, f, ..., B¢. So, we have { = 2 or
¢ = 3. We arrange the indices so that j = 0 and j = ¢ correspond to the
horizontal and vertical bend images.

Given a point (rg, ...,7¢) € [0, 1] we set

so =¢(0,1/2,19), s;i=u-1,1,r;), g=1,..,¢,

se = t(a(so), b(s0), 7e)- (13)
Here a(sg) and b(sg) are obtained as follows. We intersect the vertical line

x = so with the quadrilateral Q from Theorem 3.1 and take the upper and
lower limits. The precise formulas are

a(so) = (2/3)s0 — (1/V/3), b(se) = min(by(so), ba(s0)),

bi(s0) = min((2/3)so — (1/2), ba(so) = (4/3)s0 — (1/V3)).  (14)

In our definition of sy we could take sq € [0, 3(v/27 — v/11)], but it is simpler
just to take sy € [0,1/2]. In terms of Figure 2.1, we are setting b = sy and
t= Sk

This approach allows (sg, s¢) to sample all of Q. The other bend slopes
S1, ..., Sg—1 are each allowed to lie in [—1,1], which certainly covers all the
possibilities. Referring to Figure 2.1, we have b = sy and b = sy.
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The Offsets: Given (r1,79) € [0,1]? we define
x=1(0,1/18,71), y = 1(—1/30,1/30,73). (15)

These are the coordinates of the vector shown in Figure 2.1.

The coordinates (b, ¢, z,y) determine the placement of the horizontal and
vertical bend images. The horizontal bend image is the segment with end-
points (0,0) and (—+/1+ 5%,0,0). The vertical bend image is centered at

(x,y) and has length /1 + 2.

Confiner Calculations: For the Confiner Calculations it only remains to
describe how we parametrize the middle bend. The parameter s; determines
the length of this bend. Given a point (ry,72,73,74,75) € [0, 1]°> we set

m; =u(—1,1,7;), 7=1,2,3, 0=u(01,02,74), ¢=1o(—m/4, 7w 4rs5).
(16)
Here (my, ms, m3) is the center of the middle bend. The interval [6;, 0] is the
pitch range for the middle bound. The angle ¢ is the angle that the middle
bend image makes with the XY -plane.
So a point in [0,1]3 x [0,1]* x [0,1]5 = [0,1]'° completely specifies any
tensegrity of this type we need to consider.

The Simpler Geometry Calculations: In this case we have two middle
bend images to worry about, 5 and /5. We first describe our parameteriza-
tion for tensegrities which lie entirely in the XY -plane and then we describe
how we use 4 more parameters to give examples in R>.

We have already specified the lengths of the middle 2 bends. We just have
to specify their pitch and center. The pitch of ] is given by the problem, and
a point in [0, 1] gives the center. We use another copy of [0, 1]* for 3,. The
first coordinate determines which point of ) contains the relevant endpoint
of 1. The second coordinate determines the pitch. The pitch 6 lies in some
interval. Here are the choices we make.

1. In Geometry Calculation 1 we take 6 € [37/10,87/15].
2. In Geometry Calculation 2 we take 6 € [57 /12,77 /12].

3. In (the failed) Geometry Calculation 3’ we take 6 € [17/12, 37 /12].
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In the first case, the angle interval is specified by the problem. In the second
and third cases, the angle range is allowed to be arbitary buty our intervals
above are not covering all the cases. However, our choices cover all the cases
which, numerically, are fairly close. When we go outside the given ranges,
the capacity is huge.

So, a point in [0, 1]* x [0, 1]? x [0, 1]*> x [0, 1]> = [0, 1]'° specifies a tenseg-
rity image that lies in the XY-plane. To get a fully spatial example, we
add 4 more variables. Note that in an example of minimal capacity, some
point of f] lies in the XY-plane. (Otherwise we can decrease the capacity
by a vertical adjustment.) A parameter in [0, 1] determines a point of 5] and
another parameter in [0, 1] determines how much we rotate /3] in the vertical
direction about this point. We make the tilt such that the tilt angle ¢ lies
in [—7/4,7/4]. The same story goes for 3. Thus, a point [0, 1]* gives the
data we need to turn our planar example into a spatial example. All in all,
[0, 1]* specifies all relevant tensegrities.

Topology Calculations: Our parametrization for two Topology Calcula-
tions is just like the one for the Geometry Calculations, except that the pitch
of the second of the middle bend images is fixed and the pitch of the first of
the middle bend images varies within an interval. These intervals are specs
of the problem, In both cases the interval is [—7/30,7/12 + 7/30].

The Complicated Geometry Calculations: The Geometry Calculations
3 and 4 involve higher complexity cyclic tensegrities. We would parametrize
these above, and the huge unit cube [0, 1]?° would parametrize all the relevant
tensegrities in each case.

7.2 Hill Climbing Algorithms

For all our calculations we have our capacity function & : [0,1]Y — R,.
Here N = 10 for the Confiner Calculations and N = 14 for the Geometry
and Topology Calculations. We have some lower bound A and we are trying
to show that
min kK > . (17)
(0,1}
More precisely, with our numerical calculations we are searching for possible
counter-examples to this inequality and we want the most efficient way of
finding them. If we don’t find any counter-examples after running an efficient
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optimizing algorithm for a reasonably long time, we guess that there are no
counter-examples — i.e., the inequality is true.

We start with some initial point 7o € [0,1]Y. We then pick a small
random step size s and a random point r; € [—1,1]Y. We then replace ry by
(1 — 8)rg + srq. If some coordinate of r1 is negative, we set that coordinate
equal to 0. If some coordinate of r; exceeds 1, we set it equal to 1. In other
words, we take a small step in a random direction and then retract to [0, 1]V
if necessary. If f(ry) < f(ro) we replace o with r and repeat. This produces
a sequence of points rg, 71,79, ... on which x is decreasing. The hope is that
this sequence converges to a global minimum.

This algorithm is a reasonable approximation to Newton’s method. At
least at points where k is smooth, a small step in a random direction has a 50
percent change of moving in the direction of the gradient. and a somewhat
lower but still decent chance of making a small angle with the gradient. There
is a long list of more sophisticated numerical optimization problems, and I
will probably implement something better and report on it later on when I
have done so.

For the Geometry and Topology Calculations, I also run a variant of the
hill-climbing algorithm. With a small probability, say 107°, the algorithm
moves to a new random location regardless of whether the function value
is lower at the new location. This allows the algorithm to sample many
potential basins of attraction. Let me call this approach annealing, though
a true annealing argument is more sophisticated than this.

7.3 The Confiner Calculations

The idea behind the Confiner Calculations is quite simple. In order for the
given point to lie outside the given prism halfplane, the tensegrity has to be
“stretched” a lot. The stretching bumps up the capacity beyond /3+(1/24).
Figure 6.1 illustrates this with two examples. The first example shows a
tensegrity near the minimum for the given constraint. The capacity here is
about v/3 + 0.14. The second example shows a much more radical stretch,
where the capacity is about v/3 4+ 1.5. The red edges correspond to the
vertical sides of the associated planar quadrilaterals.
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Figure 6.1: Calculation Records

Figures 6.2-6.3, which correspond to Figures 5.4-5.6 (with redundant
pieces removed) give some idea of what the calculations are like. An edge la-
beled by, say, 0.1, indicates that after running the algorithm for a while with
respect to the line extending the edge we conclude that the minimum of the
capacity function is at least v/3+0.1. Our target is v/3+ (1/24) < V/340.05,
so even in this case we have a healthy margin for success. The red lines in-
dicate the most delicate calculations, and the orange lines indicate the next
more delicate calculations. Everything else is pretty crudely true. I ran each
of the calculations associated to the red edges at least 2 hours, and I ran the
ones associated to the small red edge labeled 0.09 for about 8 hours.

There is something I want to say about the calculation where the bound is
0.08. (Actually it is closed to .09.) When I run this calculation I notice that
when k tends towards its minimum, the corresponding b value (the slope of
the bottom bend) tends to the upper bound (v/27 — v/11)/4. This accounts
for the elongated appearance of the grey triangle on the left side of Figure 6.1.
If we wanted, we could do additional calculations to strengthen Statement 3
of Theorem 3.1 to say that we must have b < 1/3 whenever we have a tame
pair (71, 72). This would give us a more robust calculation result in this case.
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Figure 6.2: Calculation Records

>2 >2
2
0.3
=2 >1 0.4
0.> .
>2

Figure 6.3: Calculation Records
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7.4 Geometry and Topology Calculations

The functions associated to the Geometry Calculations 1 and 2 have remained
non-negative after extensive experimentation with both the hill-climbing al-
gorithm and the annealing algorithm. The function for the Geometry Calcu-
lation 3’ exhibits some negative values when I run the annealing algorithm.
This happens rather quickly for the reduced capacity, and rarely for the
ordinary capacity.

Curiously, I have left the hill-climbing algorithm on overnight for Cal-
culation 3" and it did not turn up a negative value. Neither did a random
sample I made with 1 billion points. I think that Calculation 3’ barely fails,
and that it has some small shallow basins of attraction with negative values
in their pits. Just a few applications of the hill climbing would not find these
shallow basins, and neither would my random sampling. The annealing algo-
rithm combines random sampling with some exploration of the nearby basins
of attraction and thereby does better. All this makes me wonder whether
Calculations 1 and 2 would fail under the attack of a better numerical op-
timization scheme. This is why I say that they probably work but I would
not bet my life on it.

The auxiliary calculations for the Topology Lemma, the involving cyclic
tensegrities of complexity 4, seem true by wide margins. When I ran 10
minutes worth of the hill-climbing algorithm on the function for Topology
Calculation 1 for 10 minutes, the program reached a capacity of 2v/3 + .23.
When I ran 10 minutes worth of the hill-climbing algorithm on the function
for Topology Calculation 2 , the program reached a capacity of 2¢/34.94. The
annealing algorithm produces similar results for the Topology Calculation 1,
and gets the minimum down to 2v/3 + .8 after 10 minutes.
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