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Abstract

In [S] we proved that the outer billiards system defined on the
Penrose kite has an unbounded orbit. In this article we will sketch
some of the main ideas in the proof, and describe in detail a very
convincing computer demonstration of our result.

1 Introduction

Outer billiards is a basic dymamical system which serves as a toy model for
celestial mechanics. We refer the reader to Sergei Tabachnikov’s book [T],
and also the survey [DT], for an exposition of the subject. To define an outer
billiards system, one starts with a bounded convex set S ⊂ R

2 and considers
a point x0 ∈ R

2 − S. One defines x1 to be the point such that the segment
x0x1 is tangent to S at its midpoint and S lies to the right of the ray −−→x0x1.
This construction is defined for almost every point x0. Whenever defined,
the iteration x0 → x1 → x2 → ... is called the outer billiards orbit of x0.

B.H. Neumann 1 introduced outer billiards during some lectures for pop-
ular audiences given in the 1950s. See, e.g. [N]. J. Moser popularized the
construction in the 1970s. Moser [M, p. 11] asks whether there is a shape
on which the outer billiards system has an unbounded orbit, though he at-
tributes the question to B.H. Neumann circa 1960.

∗ This research is supported by N.S.F. Grant DMS-0604426
1My information on this comes from 1999 email correspondence between Bernhard

Neumann and Keith Burns, and also from Bernhard’s son Walter.
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There have been several results related to this question. Moser [M]
sketches a proof, inspired by K.A.M. theory, that outer billiards on S has all
bounded orbits provided that ∂S is at least C6 smooth and positively curved.
R. Douady gives a complete proof in his thesis, [D]. See [B] for related work.
In [VS], [Ko], and (later, but with different methods) [GS], it is proved
that outer billiards on a quasirational polygon has all orbits bounded. This
class of polygons includes polygons with rational vertices and also regular
polygons. Genin [G] shows that all orbits are bounded for the outer billiards
systems associated to trapezoids. He also makes a brief numerical study of
a particular irrational kite based on the square root of 2, observes possibly
unbounded orbits, and indeed conjectures that this is the case.

In [S] we prove

Theorem 1.1 Outer billiards on the Penrose kite has an unbounded orbit.

The Penrose kite is the convex quadrilateral that comes up in the famous
Penrose tiling. This quadrilateral is affinely equivalent to the quadrilateral
with vertices

(0, 1); (−1, 0); (0,−1); (A, 0); A = dec(
√

5) ∼ 0.2360679977. (1)

Here dec(x) ∈ (0, 1) denotes the decimal part of x 6∈ Z.
We actually prove quite a bit more about outer billiards on the Penrose

kite. We show that there is an uncountable number of unbounded orbits, each
of which returns densely to a certain Cantor set according to the dynamics of
the 2-adic adding machine. This fine structure is a consequence of the quasi-
self-similarity of something we call the arithmetic graph. The arithmetic
graph behaves like the tilings studied in [Ke].

In this paper we will explain the arithmetic graph and give precise in-
structions for how to draw it. Our construction works for any irrational
A ∈ (0, 1) in Equation 1 and so we will explain it in this generality. The in-
terested reader can make experiments using other values of A (most notably
A = dec(

√
2)) and see that the unboundedness phenomenon is quite robust.

At the moment we only have a proof for a = dec(
√

5), but we are thinking
about a more general proof.

We wrote an extensive graphical user interface, Billiard King , to explore
this problem, and all our ideas were discovered while playing with this pro-
gram. We encourage the reader to download the Java based program
(www.math.brown.edu/∼res/BilliardKing/BilliardKing.tar) and play with it.
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2 The Arithmetic Graph

Let A ∈ (0, 1) be irrational. All our constructions are based on A. Define
T : Z

2 → R via the formula

T (x, y) = 2Ax+ 2y +
1 − A

2
. (2)

When A = dec(
√

5) our unbounded orbit is the point

(T (0, 0), 1). (3)

Lemma 2.1 The outer billiards map is entirely defined on any point of the

form

T (Z2) × {±1}
In particular, the entire orbit of the point in Equation 3 is defined.

Proof: Let L denote the family of horizontal lines in R
2 whose y-coordinates

are odd integers. The outer billiards map preserves L. The only points where
the the first iterate of the outer billiards map is undefined are points of the
form l ∩ e, where l is a line of L and e is a line extending an edge of the
Penrose kite. One can check easily, given Equation 1, that all such points
have first coordinates of the form m + An, where m,n ∈ Z. On the other
hand, no point of T (Z2)×{±1} has this form, and no iterate of such a point
has this form. ♠

Let Υ denote the square of the outer billiards map. Let C = T (Z2)×Z
′,

where Z
′ is the set of odd integers. The vector Υ(x) − x is always twice the

difference between two of the vertices of our shape S. Given Equation 1,
we see that the first coordinate of Υ(x) − x always has the form 2m+ 2nA
where m and n are integers. The second coordinate is always an even integer.
Hence Υ is entirely defined on C and preserves this set.

Let C(+) denote the set of points in C whose second coordinate is 1 and
whose first coordinate is positive. Let C(−) denote the same set, but with
the second coordinate being −1. Let C(±) = C(+) ∪ C(−). This set is dense
in the union of two rays starting at (0,±1) and parallel to (1, 0). Clearly Υ
does not preserve C(±). However, it makes sense to speak of the first return
map

ΥR : C(±) → C(±). (4)
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Given x1, x2 ∈ Z
2 we write x1 ↔ x2 if there are choices ǫ1, ǫ2 ∈ {−1, 1}

such that
ΥR(T (x1), ǫ1) = (T (x2), ǫ2). (5)

Note that the map (x, y) → (x,−y) conjugates the outer billiards map to its
inverse. It then follows from symmetry that x1 ↔ x2 if and only if x2 ↔ x1.

We let Γ ⊂ R
2 denote the graph obtained by joining points x1 and x2 by

a line segment if and only if x1 ↔ x2. We call Γ the arithmetic graph. Let
Γ0 denote the component of the arithmetic graph containing (0, 0). Thus, Γ0

encodes the structure of the return map on the two points (T (0, 0),±1).

Figure 1: Γ0 and a dilated copy of Γ0

Figure 1 shows some of Γ0, drawn in black. The origin is denoted by a
little vertical line segment (nearly) touching ∂H at its top endpoint. Note
that (0, 0) lies very slightly above the black line, but this is hard to tell from
the picture. (See Billiard King for great pictures.) There is a second curve
in Figure 1. We have dilated Γ0 by φ3 about the origin, drawn it grey, and
superimposed it on Γ0. It seems that Γ0 and φ3Γ0 lie within small tubular
neighborhoods of each other. (One might say that Γ0 is quasi-self-similar .)
We prove this result in [S], and deduce that both ends of Γ0 must exit every
tubular neighborhood of ∂H . Our main result follows immediately.
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In the next chapter we will give a recipe for drawing the arithmetic graph.
We end this chapter with a few remarks on our proof that Γ0 really is quasi-
self-similar. It turns out that there is a partition P of the square torus T 2

into 26 convex polygons. There is also a classifying map Ψ : Z
2 → T 2, given

by

Ψ = ψ ◦ T ; ψ(x) = [
x

2φ
,
x

2
] (6)

Here φ is the golden mean, and [(x, y)] is the projection of (x, y) ∈ R
2 to T 2,

and T is the map from Equation 2. Of course, the map ψ depends on our
specific choice of A = dec(

√
5) = φ−3.

Ψ has the following nice property. For any (x, y) ∈ Z
2, the local picture of

Γ around (x, y), meaning that the edges of Γ incident to (x, y), are determined
by which polygon of P contains Ψ(x, y). Presumably there is something like
this for other parameters of A in Equation 1.

Associated to P is a certain polygon exchange map, and one can produce
finer partitions of T 2 by pulling P back using the dynamics. These finer
partitions classify longer pieces of Γ. Say that a strand of Γ is a finite
polygonal arc of Γ. Say that a strand-type is a translation equivalence class
of strands. Then we can associate to each strand type of Γ a convex polygon
in R2 that classifies it: Ψ(x, y) lands in this polygon if and only if the local
picture of Γ around (x, y) matches the strand type.

There is a certain family of contractions defined on simply connected sub-
sets of T 2. Such contractions have contraction factor φ−3, and are intertwined
by Ψ with the dilation map discussed above. That is,

Ψ(Φ(x, y)) = γ(Ψ(x, y)) (7)

where Φ(x, y) is obtained by choosing an appropriate lattice point near
(φ3x, φ3y) and γ is one of the contractions in our family.

Establishing the quasi-self-similarity amounts to showing containments
of the form

γ(P ) ⊂ P ′ (8)

where P is a polygon that classifies a short strand-type of Γ and P ′ is a
polygon that classifies the longer strand-type of Γ that supposedly shadows
the dilated version of the shorter strand.

In the end we have to make 75 checks like this, and we do the calculations
on the computer, using exact integer arithmetic. We refer the reader to [S]
for the details.
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3 Drawing the Arithmetic Graph

First we describe a factorization of the return map ΥR into 8 simpler maps,
which we call strip maps.

Say that a strip is a region S ⊂ R
2 bounded by 2 parallel lines, ∂0S and

∂1S. Let V be a vector such that ∂0S+V = ∂1S. That is, V points from one
boundary component to the other. Given the pair (S, V ) we (generically)
define a map E : R

2 → S as follows. For each generic x ∈ R
2 we define

E(x) = x− nV where n is the unique integer such that E(x) ∈ S. This map
is well defined unless x lies in a discrete infinite family of parallel lines.

There is a unique affine functional f(x, y) = a1x + a2y + a3 such that
fL(V ) = 1, and f(x, y) ∈ (0, 1) iff (x, y) ∈ S. Here fL(x, y) = a1x + a2y is
the linear part of f . Given f we have the following explicit formula:

E(p) = p− floor(f(p)) V. (9)

Equation 9 is defined unless f(p) is an integer. The triple α = (a1, a2, a3)
characterizes f .
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Figure 2: Strip Decomposition of the Return Map
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Now for the main construction. Each strip in Figure 2 is obtained by
extending an edge of the side of S, and then rotating this extended side
through the off-diagonal vertex (top or bottom) that does not contain the
edge. We call the strips S1, S2, S3, S4. We set Ej = (Sj , Vj) for j = 1, 2, 3, 4
and Ej+4 = Ej. Here are the triples and the vectors associated to these edge
maps.

α1 = (−1/4,+1/4,+3/4) V1 = (0, 4)
α2 = (−φ/4,+1/2 − φ/4,+1/2− φ/4) V2 = (−2,+2)
α3 = (−φ/4,−1/2 − φ/4,+1/2 − φ/4) V3 = (+4 − 4φ, 0).
α4 = (−1/4,−1/4,+3/4) V4 = (−2,−2).

Given a point x1 ∈ C(±), at least (say) 10 units from the origin, we can
define the points x2, ..., x8 inductively, like this: j = 2, ..., 8 let xj = Ej(xj−1).
In [S] we prove the following result, which is probably quite well known.

Lemma 3.1 (Pinwheel) For any x0 ∈ C(±) the points x8 and ΥR(x0) lie

on the same vertical line.

Given the Pinwheel Lemma, we can compute the arithmetic graph just by
iterating the maps E1, ..., E8 and checking the results. Here is the algorithm
that produces the 1-neighborhood of Γ about (a, b):

• Start with (a, b) ∈ Z
2 such that x = T (a, b) > 0.

• Set x0 = (x, 1) and form the polygon x0, ..., x8 shown in Figure 2.

• Define numbers n1, ..., n8 by the rule that the segment connecting xk−1

to xk is nk times as long as the vector V2.

• Let mk = nk − nk+4.

• The first coordinate of Υ1(x0) − x0 is then 2Am3 + 2(m2 +m3 +m4).

• Therefore connect (a, b) to (a, b) + (m3, m2 + m3 + m4). This edge is
part of the arithmetic graph.

• Repeat the above steps using (x,−1) in place of (x, 1).

If you apply this algorithm for an entire block of points in Z
2, you can see

as much of Γ as you care to see. Billiard King implements this algorithm.
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