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Abstract

Meyerson’s Theorem says that all but at most 2 points of any
Jordan loop J are vertices of equilateral triangles inscribed in J . We
first prove an enhanced version of Meyerson’s Theorem which has
topological information in it. We then show that for each such J there
is an uncountable set G(J) of triangle shapes such that the same result
holds for any shape in G(J).

1 Introduction

A Jordan loop is the image of a circle under a continuous injective map into
the plane. A polygon is inscribed in a Jordan loop if the vertices of the
polygon lie in the loop. There has been a lot of interest over the years in
the problem of inscribing polygons, especially triangles and quadrilaterals,
in Jordan loops. See, for instance, [AA], [ACFSST], [H], [Mak1], [Mak2],
[Ma2], [M], [N], [NW], [S], [Shn], [Ta]. Much of this interest stems from
the famous Toeplitz Square Peg Problem, which asks if every Jordan loop
has an inscribed square. See [Ma1] or [P] for a detailed discussion.

The purpose of this paper is to prove some results about inscribing trian-
gles in Jordan loops. Half our motivation comes from M. Meyerson’s theorem
([M], 1980):

Theorem 1.1 (Meyerson) Let J be any Jordan loop. Then all but at most

2 points of J are vertices of inscribed equilateral triangles.
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This result is sharp in the sense that there are examples (e.g. an obtuse
isosceles triangle) which have two points that are not vertices of any inscribed
equilateral triangle.

One might wonder about other triangle shapes. Similarity classes of tri-
angles are parametrized by the equilateral triangle T consisting of positive
triples λ = (θ1, θ2, θ3) which sum to π. The center λ∆ = (π/3, π/3, π/3)
corresponds to the equilateral triangle shape. We will call a triangle with
angles λ a λ-triangle. Meyerson’s Theorem is not known for any λ 6= λ∆.
One step in this direction is due to M. Neilson ([N, 1991): For any Jordan
loop J and any λ ∈ T , there is a dense set of points of J which are vertices
of inscribed λ-triangles.

The other half of our motivation comes from a variant of Meyerson’s
Theorem we proved in [S].

Theorem 1.2 For any Jordan loop J there is a connected subset β of grace-

fully inscribed rectangles such that all but at most 4 points of J are vertices

of rectangles in β.

Here is the meaning of the terminology. We say that a polygon P is gracefully
inscribed in J if the cyclic order on the vertices of P is the same whether
it is computed with respect to the counter-clockwise cyclic order on P or
the counter-clockwise cyclic order on J . Theorem 1.2 is sharp in the same
way that Meyerson’s Theorem is sharp, and it has additional topological
information.

Our first result in this paper is a kind of marriage between Meyerson’s
Theorem and Theorem 1.2.

Theorem 1.3 Let J be any Jordan loop. There is a connected set β of

gracefully inscribed equilateral triangles such that all but at most 2 points of

J are vertices of triangles in β.

Our result of course implies Meyerson’s Theorem, but the proof is very
different from Meyerson’s own short and beautiful argument. We get Theo-
rem 1.3 by approximating arbitrary Jordan loops with sequences of polygons
and then taking the limit of a structural result about triangles inscribed in
polygons. Our structural result works for any shape parameter, and we are
able to squeeze some additional information out of it. Here is a preliminary
definition needed for our main result.
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Definition: Let G(J) ⊂ T denote the set of parameters λ with the following
property. There is a connected set βλ of λ-triangles gracefully inscribed in J
such that all but at most 2 points of J are vertices of triangles in βλ.

The operation of cyclically permuting the labels on a triangle corresponds
to order 3 isometric rotation of the parameters space T . We let ρ be this
order 3 rotation. Here is our main result.

Theorem 1.4 Let J be an arbitrary Jordan loop. If Λ is a ρ-invariant,
compact, connected subset of T , then Λ ∩G(J) 6= ∅.

We point out that Theorem 1.4 does not imply that there is some λ 6= λ∆

which lies in G(J) for all J . At first it seemed that we could use the structural
result we describe below to show that G(J) = T but Theorem 1.4 is the best
we can do without new ideas.

We mention two corollaries of Theorem 1.4. Applying Theorem 1.4 to the
triangle in T whose vertices are the 3 cyclic permutations of (θ, θ, π − 2θ) ,
we get the following corollary.

Corollary 1.5 Let J be an arbitrary Jordan loop. For any angle θ ∈ (0, π/2)
the set G(J) contains a parameter which specifies a triangle having some

angle equal to θ. We can take θ to be the smallest angle when θ ≤ π/3 and

the largest angle when θ ≥ π/3.

We also have the following immediate corollary.

Corollary 1.6 With respect to any Jordan loop, the conclusion of Meyer-

son’s Theorem holds for an uncountable collection of triangle shapes.

Now we explain our structural result about polygons. Let J be a polygon.
We call J obtuse if all the angles at the vertices of J exceed π/2 degrees.
We say that J is angle-adapted to λ if the minimum angle between any two
edges of J exceeds the maximum angle of a λ-triangle. (These concepts
are related: If J is angle-adapted to a parameter which specifies an obtuse
triangle, then J is automatically obtuse.) Let Ω3 denote the set of ordered
triples (p1, p2, p3) ∈ J3 consisting of distinct points. The space Ω3 is a disjoint
union of two open solid tori. Let I(J, λ) ⊂ Ω3 be the set of triangles of shape
λ that are inscribed in J .
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Theorem 1.7 For each obtuse polygon J there is a finite union LJ of lines

with the following property. If λ ∈ T − LJ and J is angle-adapted to λ then

I(J, λ) is a finite union of disjoint polygons and exactly one component of

I(J, λ) is homologically nontrivial.

Remarks:
(1) The set LJ depends linearly with the angles of J . For fixed λ we have
λ ∈ T −CJ when J is generically chosen. Thus, Theorem 1.7 says something
about every triangle shape.
(2) The crucial part of Theorem 1.7 is the single essential component; the
rest is pretty easy. I discovered Theorem 1.7 experimentally.
(3) The condition that J is angle-adapted to λ is necessary. When λ specifies
an acute triangle, the obtuseness condition is not necessary but makes the
proof easier.
(4) In [S, Theorem 5.2] we proved that the triangles corresponding to any
essential component of I(J, γ) are gracefully inscribed. We use this fact to
get the graceful nature of the triangles in Theorem 1.5.
(5) Theorem 1.7 is subtle and here we explain why the obvious approach
does not work. The obvious approach would be to start with some J0 where
the result is clear – e.g., a convex polygon – and then analyze the local
changes to the space I(Jt, λ), where Jt is a family of polygons that makes a
generic interpolation between J0 and some polygon J1 of interest. A fairly
easy argument shows that the homology class of represented by I(Jt, λ) in
H1(Ω3) does not change with t.

before

critical

after

Figure 1.1: A locally allowed but globally bad topological transition.

The difficulty is that a priori one inessential component could self-intersect
at a critical point and turn into two oppositely oriented essential compo-
nents. This would not change the picture homologically but it would change
the number of essential components. Figure 1.1, which takes place in a cylin-
der made from identifying the vertical boundaries of a strip, shows what we
mean. It seems hard to rule out this transition with just local information.
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Here is an outline of the rest of the paper.

• Taking a Limit: In §2 we deduce Theorems 1.3 and 1.5 from Theorem
1.7 and a related technical result, Lemma 2.8. We treat the Theorem
1.3 separately, again, for the sake of exposition. The fact that there is
just one essential component in Theorem 1.7 is crucial to the proofs.
Following §2, the rest of the paper concerns the proof of Theorem 1.7.

• Fiber Product Lemma: In §3 we prove an elementary result about
the fiber product of two maps from the circle to itself. We call this the
Fiber Product Lemma. It seems to me that this result must be known,
but I haven’t found it in the literature. The single essential component
statement in Theorem 1.7 ultimately comes from the single essential
component statement in the Fiber Product Lemma.

• Component Lemma: In §4 we discuss what we mean by a folding

map. This is an almost-everywhere non-singular piecewise linear map
from the torus into the plane whose folding set – i.e. the edges over
which the map reverses orientation – is a finite union of pairwise dis-
joint embedded polygonal loops. We bound on the number of essential
components in the pre-image of a Jordan loop such a map can have
in terms of the number of essential components of its folding set. Our
main result is what we call the Component Lemma.

• Folding Lemma: In §5 we relate the problem of inscribing triangles to
the idea of a folding map, then get a bound on the number of essential
components of the associated folding set by invoking the Fiber Product
Lemma from §3. Our main result is the Folding Lemma.

• Putting it Together: In §6 we combine the Component Lemma from
§4 and the Folding Lemma from §5 to prove Theorem 1.7. At the end
of §6 we prove Lemma 2.8, the technical result left over from §2.

I would like to thank Arseniy Akopyan, Ramin Naimi, Igor Rivin, and
Sergei Tabachnikov for discussions and questions about topics related to this
paper.
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2 Taking a Limit

2.1 Limits and Convergence

In this chapter we deduce Theorem 1.5 from Theorem 1.7.
Let X be some metric space and let X denote the set of compact subsets

of X. The Hausdorff distance between two elements A,B of X is the infimal
ǫ > 0 such that each point of A is within ǫ of B and vice versa. This notion
of distance makes X into a compact metric space.

Lemma 2.1 Suppose that a sequence {An} of compact connected sets in X
converges to a set A of X. Then A is connected.

Proof: If A is disconnected, there are disjoint open sets U, V ⊂ C such that
A ⊂ U ∪ V , and A ∩ U and A ∩ V are both not empty. Since A is compact,
there is some ǫ > 0 such that every point in A is at least ǫ from every point
in C − U − V . Since An is connected, this is only possible if C − U − V
contains a point xn ∈ An. But then xn is at least ǫ from A, independent of
the choice of n. Contradiction. See [S, Lemma 2.1] for a less terse proof. ♠

Let J be a Jordan loop. We think of J as the image α(R/Z) where
α : R/Z → C is continuous and injective.

Lemma 2.2 The Jordan loop J can be approximated by a sequence of poly-

gons that are obtuse and angle-adapted to shape λ. More precisely, there is

a sequence {αn} of maps from R/Z into C which converges uniformly to α.

Proof: It is well known that any Jordan loop can be approximated by a
sequence of polygons in the parametrized sense. See [T]. To arrange the
needed angle condition, we can cut off the corners of the polygons in our
sequence, repeatedly, and increasingly near the vertices, until all the interior
angles are large enough. At the same time we modify the maps to reflect this
change. We then make small generic perturbations. ♠

Let Jn = αn(R/Z). The sequence {Jn} is a sequence of polygons con-
verging to J in a parametrized sense.
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2.2 The Equilateral Case

In this section we prove Theorem 1.3. Let λ = λ∆, the equilateral triangle
shape.

We take the polygonal approximation discussed above. Referring to The-
orem 1.7, we perturb so that λ ∈ T −LJn for all n. Let In = I(Jn, λ) denote
the space of equilateral triangles inscribed in Jn. Let βn be the unique essen-
tial component of In. Let ǫn denote the side length of the smallest triangle
associated to βn. If the sequence {ǫn} is uniformly bounded away from 0,
then the Hausdorff limit β = lim βn is a connected subset of I(J, λ) such that
every point of J is a vertex of some triangle in β. For later reference, we call
this the easy case.

For the remaining case, we can pass to a subsequence so that ǫn → 0. Let
∆j, for j = 1, 2, 3, be the vertices of an labeled equilateral triangle ∆. Let
∆12 denote the side of ∆ which connects ∆1 to ∆2. One of the two arcs of
Jn − (∆1 ∪ ∆2) does not contain ∆3. Let µ(∆) denote the measure of this
arc, according to the parametrization αn. What we mean is that there is
some interval I ⊂ R/Z such that αn(I) connects ∆1 to ∆2 and avoids ∆3,
and µ(∆) is the length of I.

Lemma 2.3 The range of µ on βn converges to (0, 1) as n → ∞.

Proof: Here is the crucial part of the proof. The act of cyclically permuting
the labels of a triangle acts on the space In. In particular, this action maps
essential components to essential components. Since there is exactly one
essential component, we see that βn is invariant under cyclic relabeling.

The rest of the proof is continuity. Let τn be the smallest equilateral
triangle associated to βn. Let tn be the 3-element subset of R/Z such
that αn(tn) = τn. Given that the side length of τn tends to 0 and that
the parametrizations converge, the diameter of the smallest interval of R/Z
containing tn tends to 0. But then µ(τn) is either close to 0 or close to 1.
In the former case, µ(τ ′n) is close to 1 for a suitable relabeling τ ′n of τn. In
the latter case, µ(τ ′n) is close to 0 for a suitable cyclic relabelling τ ′n of τn. In
either case, we find two triangles τn and τ ′n such that µ is close to 0 on one of
them and close to 1 on the other. Since µ(βn) is connected, this set achieves
all values between these two extremes. ♠

Let In = [1/n, 1−1/n]. We can pass to a subsequence so that In ⊂ µ(βn).
The next result is meant to hold for each fixed value of n.
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Lemma 2.4 There are closed arcs βn(3) ⊂ ... ⊂ βn(n) ⊂ R/Z such that µ
maps βn(k) to Ik for k = 3, ..., n.

Proof: We start with a point τ ∈ βn such that µ(τ) = 1/2 and then we let
βn(k) be the smallest arc of βn containing τ such that µ maps βn(k) to Ik.
These arcs automatically have the desired containment properties. ♠

Lemma 2.5 For fixed k there is some uniform ǫk > 0 such that each point

of βn(k) corresponds to an equilateral triangle of diameter greater than ǫk.

Proof: Let {τn} be a supposed equence of counter-examples. Let {tn} be
the corresponding 3-element set of R/Z. The distance between the first 2
points of tn tends to 0, forcing the side length of τn to 0. But then one of
the sides of τn must subtend nearly the whole of Jn. This forces µ(τn) either
to 0 or to 1. ♠

Now we are ready to take a limit.

Lemma 2.6 I(J, λ) contains a connected set β such that µ(β) = (0, 1).

Proof: Passing to a subsequence we can assume that, for each k, the se-
quence {βn(k)} is a Cauchy sequence in the Hausdorff metric. Let β(k)
denote the limit. The set β(k) is connected, by Lemma 2.1. Moreover, each
point of β(k) corresponds to an equilateral triangle inscribed in J . Finally,
µ(β(k)) = Ik by continuity. We have β(3) ⊂ β(4) ⊂ β(5).... The nested
union of connected sets is connected, so the union β =

⋃
β(k) has the de-

sired properties. ♠

Suppose that there are three points of J which are not vertices of equilat-
eral triangles associated to β. These three points divide J into three intervals.
Since β is connected, the jth vertex of any triangle associated to β lies in
the same interval, independent of the triangle. If each interval contains a
vertex, we get a positive lower bound to the value of µ on β. If some interval
is empty, we get a finite upper bound. Either way, we have a contradic-
tion. Note that we are taking limits of gracefully inscribed triangles, so the
triangles associated to β are graceful.
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2.3 The General Case

In this section we will prove Theorem 1.4, which says that for any Jordan
loop J and any ρ-invariant compact connected subset Λ ⊂ T , the intersection
G(J) ∩ Λ is nonempty. We begin with a lemma from point set topology.

Lemma 2.7 Let Λ be a planar set which has no isolated points. Let {Lt}
be a non-constant continuous family of lines. Some line Ls in the family has

the property that Ls ∩ Λ is nowhere dense in Λ.

Proof: We will assume that this is false and derive a contradiction. We note
first of all that a basis for the topology on Λ is given by the intersections of
Λ with open disks in the plane. If our result is false, then for each t there is
some open disk Dt in the plane such that Dt ∩ Λ is contained in, and dense
in, Dt ∩Lt. We can adjust Dt so that the center of Dt lies in Λ. Since Λ has
no isolated points, there are points of Dt ∩ Λ arbitrarily close to the center
of Dt but unequal to it.

Suppose that s and t are two different parameters such that Ls and Lt

are distinct lines. Then the center of Ds cannot lie in Dt. Otherwise, there
is a point ζ of Λ ∩Dt (either the center of Ds or a nearby point of Λ) which
does not lie in Lt. But then there is a positive distance between all points
of Lt ∩ Dt and ζ. This contradicts the fact that Lt ∩ Λ is contained in,
and dense in, Lt ∩ Λ. The same argument works with the roles of s and t
reversed. Hence, the distance between the centers of Ds and Dt is at least
max(|Ds|, |Ds|), where | · | is the radius function. But then 1

2
Ds and

1

2
Dt are

disjoint.
For each parameter t we have constructed an open disk, namely 1

2
Dt,

having the property that two of these disks are disjoint if they correspond to
parameters indexing different lines. Since there are uncountably many dis-
tinct lines in our family, we have just put an uncountable number of disjoint
open disks in the plane. This is obviously impossible. ♠

Now we state a technical result whose proof we defer until §6.4. Let J
and LJ be as in Theorem 1.7 and let A be a circular arc in T with endpoints
in T − LJ . Define

I(J,A) =
⋃

λ∈A

I(J, λ). (1)
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Lemma 2.8 Suppose that J is obtuse and angle-adapted to all parameters in

A. Then the essential components β0 and β1 corresponding to the endpoints

of A lie in the same path component B of I(J,A), unless perhaps A contains

a certain finite union PJ of exceptional points.

Remark: Excluding the points in PJ is not really necessary but it makes
the proof of Lemma 2.8 easier.

Proof of Theorem 1.4: We ignore the case when Λ is a single point because
Theorem 1.3 covers this case. Otherwise, Λ is infinite and connected, and
hence has no isolated points. This means that Λ satisfies the conclusion of
Lemma 2.7.

Let {Jn} be a sequence of polygons approximating J . We can arrange that
Jn is obtuse and angle-adapted to every point in some tubular neighborhood
〈Λ〉 of Λ. As discussed at the end of §6.3 we can vary Jn continuously so
that each line of LJn either instantly disappears or moves in a generic family.
Hence, by Lemma 2.7, we can perturb by as small an amount as we like so
that Λ ∩ LJn is nowhere dense in Λ. Let Λ∗ be the subset of Λ consisting of
points not in any LJn . Note that Λ

∗ is dense in Λ. Also, LJn is ρ-equivariant,
so Λ∗ is also ρ-invariant.

We remind the reader that αn : R/Z → Jn is the parametrization of Jn.
Given a triangle τ inscribed in Jn, and k = 1, 2, 3, we let µk(τ) denote the arc
length of the interval γ ⊂ R/Z such that αn(γ) is the arc of Jn subtended
by the kth side of τ . Given λ ∈ Λ∗, define µk(λ) ∈ [0, 1], where

µk(λ) = lim sup
n→∞

( sup
τ∈βn

µk(τ)). (2)

Here βn is the essential component of I(Jn, λ). Let Sk ⊂ Λ∗ denote the set
of parameters λ ∈ Λ∗ such that µk(λ) = 1. Geometrically this means that
for all large n there are very small triangles of shape λ inscribed in Jn where
the kth side subtends practically all of Jn.

Suppose first that Λ∗ contains a point λ ∈ T − S1 − S2 − S3. Then there
is a uniform positive lower bound to the diameter of any λ-triangle inscribed
in Jn, independent of n. The same argument as in the easy case of Theorem
1.3 gives λ ∈ G(J).

Suppose now that Λ∗ ⊂ S1 ∪ S2 ∪ S3. Note that p ∈ Sk iff ρ(p) ∈ Sk+1.
Here indices are taken mod 3. Since Λ∗ is ρ-invariant and dense in the
compact connected set Λ, we can find sequences {λ1,n} ⊂ S1 and {λ2,n} ⊂ S2

10



such that λ1,n and λ2,n both converge to the same point λ∞ ∈ Λ. Passing to
a subsequence, we can assume that there is some triangle τk,n in the essential
component βλk,n

of I(Jn, λk,n) such that µk(τk,n) > 1 − 1/n. Here k = 1, 2.
Setting µ = µ2 we have

µ(τ1,n) < 1/n, µ(τ2,n) > 1− 1/n. (3)

We can connect λ1,n to λ2,n by a circular arc An of length less than (say)
2|λ1,n − λ2,n| which avoids the set PJn from Lemma 2.8 and stays in the
tubular neighborhood 〈Λ〉 of Λ.

By Lemma 2.8, there is a path component Bn ⊂ I(J,An) which contains
βλk,n

, and hence τk,n, for k = 1, 2. So, we can connect τ1,n to τ2,n by a path
βn ⊂ Bn. By construction In = [1/n, 1 − 1/n] ⊂ µ(βn). We now have the
same situation that Lemma 2.3 establishes in the equilateral case, except
that the shapes in βn vary in a small neighborhood of the two parameters
λ1,n and λ2,n. This change makes no difference to our limiting arguments,
because these parameters converge to λ∞. Hence λ∞ ∈ G(J). ♠
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3 The Fiber Product Lemma

We call the map f : R/Z → R/Z a nice map if f has degree 1, is piecewise
linear, and is not constant on any interval. We call the points where f locally
reverses direction the fold points . We call t = f(s) a fold value if s is a fold
point for f . Given two nice maps f1, f2 : R/Z → R/Z we can form the fiber
product

H(f1, f2) = {(s1, s2) ∈ T | f1(s1) = f2(s2)}. (4)

We call two nice maps f1 and f2 unrelated if they have no common fold
values. For the sake of completeness, we prove the following result in this
chapter.

Lemma 3.1 (Fiber Product) Suppose that f1 and f2 are unrelated nice

maps. Then H(f2, f2) is a polygonal 1-manifold which has exactly one con-

nected component that is homologically nontrivial in T . When suitably ori-

ented, the one nontrivial component represents (1, 1) in homology H1(T ).

We will break the proof into 4 steps. Let H = H(f1, f2) be the fiber
product of f1 and f2.

Lemma 3.2 H is a polygonal 1-manifold.

Proof: Given two partitions {Ii} and {Jj} ofR/Z into intervals, we can take
the product and get a partition of T into rectangles {Rij} with Rij = Ii×Jj.
Since f1 and f2 are unrelated, we can choose these partitions so that the
restriction of each function to each interval is linear and injective, and no
vertex of an Rij belongs to H. The locations of the fold points force us to
choose certain breaks in the partitions, but otherwise we choose the breaks
generically.

Let Hij = H ∩ Rij . By construction Hij is either the empty set or a line
segment which connects the interior point of some edge of Rij to the interior
point of some other edge of Rij. Consider the picture around an endpoint p
of Hij. Let R

′ be the rectangle adjacent to Rij across the edge containing p.
Since H ∩ R′ is not the emptyset, H ∩ R′ has the structure just mentioned.
In particular, Hij meets a unique line segment of H at p. This shows that
H is a polygonal 1-manifold. ♠
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Lemma 3.3 H has an orientation with the following properties:

• Whenever the generic vertical geodesic x = x0 intersects H at a point

(x0, y), the relevant segment points to the right if and only if f ′
2(y) > 0.

• Whenever the generic horizontal geodesic y = y0 intersects H at a point

(x, y0), the relevant segment points to the top if and only if f ′
1(x) > 0.

Proof: Here is the construction. If f1(Ij) and f2(Jj) are not disjoint, then
they overlap in one of 4 possible ways. At the same time, there are 4 possible
orientations for these segments, depending on the signs of the derivatives
f ′
1 and f ′

2. All in all, there are 16 different possibilities. For each of these
possibilities, we choose an orientation for the corresponding segment of H,
according to the scheme shown in Figure 3.1.

9 10 11 12

13 14 15 16

5 6 7 8

1 2 3 4

Figure 3.1: The orientation on the fiber product

A case-by-case check shows that this scheme defines a consistent orienta-
tion on H. Figure 3.2 shows how Cases 1,2 fit together and how Cases 1,3
fit together.
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1

3

1

1,2

2 1,3

3
1

Figure 3.2: Adjacent pairs of segments and their tiles.

Now we check how the geodesic x = x0. intersects one of our tiles. In
all cases, the arrow in Figure 3.1 points to the right if and only if the lower
of the two segments (corresponding to f2(Jj) points to the right. Similarly,
we check how the geodesic y = y0 intersects our tiles. In all cases, the arrow
in Figure 3.1 points up if and only if the upper of the two segments (corre-
sponding to f1(Ii)) points to the right. ♠

From now on we equip H with the orientation given above, and we call
it the natural orientation. Since H is oriented, it makes sense to ask which
homology class H represents in H1(T ).

Lemma 3.4 H represents the element (1, 1) in H1(T ).

Proof: If suffices to show that the geodesics x = x0 amd y = y0 each
intersect H once, counting the orientations. Consider x = x0. Each inter-
section point with this geodesic corresponds to a parameter value y where
f2(y) = f(x0). The orientation points to the right if and only if f ′

2(y) > 0.
But the number of times f ′

2(y) > 0 is one more than the number of times
f ′
2(y) < 0 because f2 has degree 1. In other words, f2(R/Z) crosses a point
righwards one more time than it crosses leftwards. This proves our claim for
the geodesic x = x0. A similar argument works for the geodesic y = y0. ♠

Now we know that H represents (1, 1) in H1(T ). Two distinct and non-
trivial homology classes in T intersect unless they represent the same homol-
ogy classes or their sum is 0 in homology. SinceH is an embedded 1-manifold,
all the homologically nontrivial components of H represent either (1, 1) or
(−1,−1). Moreover, the number of (1, 1) representatives is one more than
the number of (−1,−1) representatives. The last step finishes the proof.
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Lemma 3.5 An arbitrary non-trivial component h of H represents (1, 1) in
homology.

Proof: Again, we are equipping h with its natural orientation. We can find
a piecewise linear map a : R/Z → T such that a = (a1, a2) parametrizes h,
and each aj is a degree 1 map. Define b = fj ◦ a1. This map is independent
of j and has degree 1.

The parametrization a gives h a second orientation of h which we call the
forced orientation. The component h represents the element (1, 1) in H1(T )
with respect to the forced orientation. So, to finish the proof, we need to
show that the forced orientation and the natural orientation coincide.

Given t ∈ R/Z we can compare the signs of f ′
2(a2(t)) and a′1(t). The

former quantity determines the direction that h points across the vertical
line through a(t). The latter quantity determines the direction that h points
across the vertical line through a(t). The two orientations agree iff the two
quantities have the same sign. By the Chain Rule, f ′

2(a2(t)) is positive if and
only if a′2(t) and b′(t) have the same sign. Therefore the two orientations
agree if there is any point t such that

a′1(t)a
′

2(t)b
′(t) > 0 (5)

Note that aj(s) = aj(t) implies that b(s) = b(t). This is because b = fj ◦ aj.
We will suppose that Equation 5 fails for all t and we will derive a contra-

diction. We can find lifts A1, A2, B : R → R of a1, a2, b respectively. Each
function F is such that F (x+1) = F (x)+1. The lifted functions also satisfy
the same property as above: If Aj(s) = Aj(t) then B(s) = B(t). Moreover
A′

j = a′j and B′ = b′. So, A′
1(t)A

′
2(t)B

′(t) < 0 whenever all these derivatives
are defined. In particular, these derivatives cannot all be positive.

Say that a point t ∈ R is a peak if the function B(t) − t has a global
maximum at t. A peak exists because the function B(t)− t is periodic. Let
t0 be a peak. By construction, B(s) < B(t0) for all s < t0. For ǫ > 0
sufficiently small, we have B′(t0 − ǫ) ≥ 1 > 0. We pick ǫ so small that no
derivative changes sign on [t0 − ǫ, t0]. Since not all derivatives are positive,
have A′

j(t0 − ǫ) < 0 for some j. By the Fundamental Theorem of Calculus,
Aj(t0 − ǫ) > Aj(t0). Since Aj(t0 − 1) < Aj(t0) there is some s ∈ (t0 − 1, t0)
such that Aj(s) = Aj(t0). But then B(s) = B(t0). This is a contradiction. ♠
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4 The Component Lemma

4.1 Main Result

Let T be the square torus. Suppose that ∆ : T → C is a piecewise linear
map that is almost-everywhere non-singular. So, T has a triangulation and
the restriction of ∆ to the interior of each triangle is an affine isomorphism
onto its image. We define the folding set B to be the set of edges e in the
triangulation of T such that ∆ is orientation reversing on one side of e and
orientation preserving on the other. Informally, the map ∆ locally folds the
domain over the folding set. We call ∆ a folding map if B is a finite union
of pairwise disjoint embedded polygonal loops.

Example: Let Υ be a planar annulus bounded by 2 polygonal curves. Let
Υ∗ denote the piecewise linear torus obtained by doubling Υ – i.e., gluing 2
copies along their common boundary. There is a natural map π : Υ∗ → Υ
which just forgets the name of the copy. A folding map is given by ∆ = π◦f ,
where f : T → Υ∗ is some piecewise linear homeomorphism.

Let ∆ be a folding map, as above. We say that a primitive homology
class Θ ∈ H1(T ) is a characteristic of ∆ if, when suitably oriented, each
essential component of B represents Θ. Note that Θ′ is a characteristic ∆
if and only if Θ′ = ±Θ. In our applications, Θ = ±(1, 1) in the standard
homology basis.

Suppose that ∆ has a nonzero characteristic. Of the two nonzero char-
acteristics, we make a choice of one of them, and call it Θ. We say that a
polygon K ⊂ C is adapted to ∆ if the following is true.

• A = ∆−1(K) is a finite union of pairwise disjoint embedded polygonal
loops, all transverse to B.

• When suitably oriented, each essential component of A represents Θ.
We call this the positive orientation.

• The restriction of ∆ to each essential component of A, given the positive
orientation, is a degree 1 map onto K.

The purpose of this chapter is to prove the following result.

Lemma 4.1 (Component) The number of essential A-components is at

most the number of essential B-components.
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4.2 A Special Case

Here we prove the Component Lemma under the assumption that the es-
sential components of A are disjoint from B. In this case, the restriction of
∆ : a → K is a homeomorphism for each essential component a of A. The
reason is that ∆ has degree 1 and makes no folds in a neighborhood of a.

We will assume that the conclusion of the Component Lemma is false
and derive a contradiction. The essential components of A divide T into a
number of annuli, one of which is shown at left in Figure 4.1. The B curves
are drawn in black and the A curves are drawn in various shades of grey.
Since the annuli boundaries are disjoint from B, each B component must be
contained in some annulus. Since there are more annuli than B components,
one of the annuli does not contain an essential B component. The annulus
X shown in Figure 4.1 has this feature. We have colored T white or grey
according as the map ∆ is orientation preserving or reversing.

X

A1

A2

K

Figure 4.1: One of the annuli.

Given that X contains no essential component of B, one can connect
the two boundary components of X by a polygonal path β that avoids the
B curves and therefore remains entirely in a monochrome (white or grey)
region. We have indicated β with a dotted path that remains in the white
region.
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Let γ = ∆(β). The curve γ starts out on K, moves away, crosses K an
even number of times, then returns to K. These crossings come from the
places where β crosses inessential components of ∆−1(K). The right side of
Figure 4.1 shows the situation. If β stays in the white (orientation preserving)
region, then ∆(β) must start by moving into the bounded region of C −K,
as shown in Figure 4.2. In other words, we can say that ∆(β) starts out by
moving inside. Counting the crossings, we see that γ must reach the second
endpoint on K from the inside. That is, all points of γ sufficiently near the
second endpoint must also be in the bounded component of C−K. But this
is a contradiction: The map ∆ would have to be orientation reversing at the
second endpoint of β. A similar argument with outside replacing inside.

4.3 The General Case

Now we consider the general case. The proof goes by induction on the number
of intersections between the essential components of A and the components
of B. The special case above is the base case for the induction. For the
inductive step, the idea is to find an “innermost intersection” and modify ∆
near the relevant segment of A so as to eliminate 2 intersection points and
retain the number of essential A and B components and the general nature
of the map. We will do the construction in small steps.

Notation and Terminology: Let a be an essential component of A. The
restriction ∆ : a → K is a degree 1 map, but in general it need not be mono-
tone. The map ∆|a is monotone on the intervals bounded by the finitely
many points of a∩B. Because a lies in the same homology class as each es-
sential component of B, there are an even number a1, ..., an of such intervals.
There are numbers w1, ..., wn such that the restriction ∆|ai is monotone, and
winds 4wi units around K, which we normalize below to have length 4. The
number wi is positive iff ∆(ai) winds counter-clockwise around K. The only
constraint we have is that w1 + ... + wn = 1 and the signs alternate We call
these numbers the weights . There are n/2 positive weights and n/2 negative
weights.

Cleaning up the Map. We pre-compose ∆ with a piecewise linear homeo-
morphism so that the essential components of A are geodesics, and we post-
compose by a piecewise linear homeomorphism so that K is the unit square
centered at the origin. The transversality condition guarantees that we can
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make small modifications to ∆ near a so that it has a product structure in
the sense that

(∆ ◦ tǫ)|a = (d1+ǫ ◦∆)|a. (6)

Here tǫ is translation by ǫ normal to a, and d1+ǫ is dilation by 1 + ǫ about
the origin. The cleanest way to do this is to slice T open along a and graft
in the desired product map.

A Surgery Operation: We now explain a modification of ∆ where we
change ∆ inside σ. Let σ+ and σ− be the two components of σ − a. Let ∆±

be the restriction of ∆ to ∂σ±. We first define a new piecewise linear and
degree 1 map f : a → K. We then take a new map ∆f in σ± so that it maps
tǫ(a) to d1+ǫ(K) and interpolates between f and ∆±. That is, we use σ to
implement homotopies between f and ∆±. Finally, we set ∆f = ∆ outside
σ. By construction, ∆f is a fold map and Af = A. Here Af = ∆−1

f (K). The
folding set Bf agrees with B outside σ but inside σ the two sets can differ.
We call f the surgery core. After we do a surgery we modify the map again,
as above, to retain the product structure near a.

Changing the Weights: If necessary, we first choose the surgery core f so
that it has the following properties.

• f |a and ∆|a have the same branch points.

• The weights w′
1, ..., w

′
n for f satisfy sign(w′

j) = sign(wj) for all j.

• If w′
j > 0 then | 2

n
− w′

j| < 1

100n
.

• If w′
j < 0 then |w′

j| < 1

100n
.

• When w′
j < 0, the image f(aj) is at least

1

2n
from any vertex of K.

The choice of 1

100n
is an arbitrary but convenient cutoff. We do the homo-

topies so to that the resulting weights linearly interpolate between the new
ones and the old ones and the branch points do not move. This surgery does
not change A or B.

Innermost Digon: Since all the essential loops are in the same homol-
ogy class, we can find a digon D whose interior is disjoint from A ∪ B and
whose boundary has one arc in an essential component a of A and the other
edge in B, as shown in Figure 4.2.
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 a

D

B

a1

R

D

Figure 4.2: An innermost digon and the region of modification.

Let a1 be the interval of a which is the boundary component of D. Once
we do this, we can find a rectangular neighborhood R of a1, as shown on the
right side of Figure 4.2, so that

• ∆(a1) ⊂ ∆(R ∩ a), and ∆(R ∩ a) lies in a single side of K.

• The top and bottom of R lie in the top and bottom of the kind of
product-behavior strip we have been considering.

Note that ∆ ∩ B is just a union of 2 segments that cut across R.

Eliminating the Fold: We choose a surgery core f , so that f = ∆ on
a−R and f is monotone in a∩R. We do the surgery using homotopies that
are constant outside R. These homotopies just undo the little fold in the
most straightforward way. The new map has the same number of essential
A components and essential B components but overall 2 fewer intersections
between essential A components and essential B components. Our result
now follows from induction on the number of these intersection points.

  
 

RR

Figure 4.3: Changing the fold lines.
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5 The Folding Lemma

5.1 Main Result

Recall that a polygon is obtuse if every angle between consecutive edges
is obtuse. Suppose, for j = 1, 2, that αj : R/Z → Jj ⊂ C is a piecewise
linear parametrization of an embedded obtuse polygonal loop Jj. Recall that
T = (R/Z)2. We introduce the difference map ∆ : T → C. The map is

∆(s1, s2) = α1(s1) + α2(s2). (7)

Lemma 5.1 (Folding) Suppose that both J1 and J2 are obtuse and no side

of J1 is parallel to a side of J2. Then ∆ is a folding map and the fold set B
has precisely 2 essential components. When suitably oriented, these essential

components each represent (1, 1) in H1(T ).

Remark: Since we can replace J2 by the reflected curve −J2, the truth of
the Folding Lemma for the map ∆ implies the truth of the Folding Lemma
for the map ∆′ where ∆′(s1, s2) = s1− s2. We are really interested in ∆′ but
we make the arguments for ∆ because the picture is easier to see.

5.2 The Folding Map

Lemma 5.2 The map ∆ is a folding map.

Proof: For j = 1, 2 let ej be an edge of Jj. Since e1 and e2 are not parallel.
The restriction ∆|e1×e2 agrees with an invertible affine map onto a parallel-
ogram. So, T has a tiling by rectangles such that the restriction of ∆ to
the interior of each rectangle is locally affine and invertible. Hence ∆ is a
piecewise linear map and the fold set B is a union of horizontal and vertical
edges of the rectangle tiling. It remains to show that B is a finite union of
embedded polygonal loops. We just need to show that each vertex of the
rectangle tiling is incident to either 0 or 2 edges in the fold set.

The set ∆(J∗
1 ×J∗

2 ) is a union of 4 parallelograms, with the property that
every two consecutive ones share an edge. For this reason, there are an even
number edges in B meeting at a point. We just have to rule out the case of
4 such edges. If 4 edges of B come together at a point then all 4 edges of
J∗
1 ∪ J∗

2 lie in the same half-plane, and the edges of J∗
1 do not interlace with

the edges of J∗
2 . This is impossible with the obtuse angle condition. ♠

21



5.3 Another View of the Folding Set

It remains to analyze the essential components of the fold set B. If we make
piecewise linear changes to α1 and α2 we do not change the truth of the
result. So, we take α1 and α2 to be constant speed parametrizations. We
now think about the folding set in a different way. Let J be either J1 or J2.
We orient J counterclockwise. Say that a line ℓ is tangent to J if ℓ intersects
the solid region bounded by J in either a single point or in an edge of J . So,
ℓ is either the extension of an edge of J or else a line through a vertex of J .
In the former case, we say that ℓ is tangent to J at each of the points on the
relevant edge. In either case, the counterclockwise orientation on J induces
an orientation on ℓ.

Lemma 5.3 The set B is the set of points (p1, p2) such that there are parallel

lines ℓ1 and ℓ2 respectively tangent to J1 and J2 at α1(p1) and α2(p2).

Proof: Let B′ be the set described above in terms of tangent lines. Both B
and B′ are defined by the property that det d∆, where defined, takes both
signs at points arbitrarily close to a point if and only if it belongs to the set
in question. Hence B = B′. ♠

Keeping the notation from Lemma 5.3, we call a point (p1, p2) ∈ B pos-

itive if ℓ1 and ℓ2 point in the same direction and negative if ℓ1 and ℓ2 point
in opposite directions. This partitions B into two sets B+ and B−, and each
of the sets is a finite union of components of B. If we were to reverse the
orientation of one of the curves, and keep the same definitions, we would
interchange B+ and B−. We will show that B+ has a single essential com-
ponent which, when suitably oriented, represents (1, 1) in H1(T ). The same
argument works for B−.

The Approximation Idea: We would like to apply our fiber product re-
sult. Morally speaking, Lemma 5.3 reveals the set B+ to be the fiber product
of the unit tangent maps “f1” and “f2” associated to α1 and α2. Here the
map “fj” applied to a point s is “the unit tangent vector” at αj(s). This
notion does not quite make sense when we work with polygons, and that is
why we put the things in quotes. To make the idea work, we need to replace
our polygons with Jordan loops that have a well-defined (and easy to under-
stand) unit tangent map.
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5.4 Piecewise Circular Approximation

We say that a piecewise circular loop is a Jordan loop that is made from a
finite union of circular arcs. We insist that the tangent lines match when two
different circular arcs meet. Thus, a piecewise circular loop is a C1 curve.
Any constant speed parameterization of a PCL is C1.

Lemma 5.4 J1 and J2 can each be approximated by a sequence of PCLs.

Proof: Let J be one of J1 or J2. We replace each vertex v of J by a small
circular arc V of curvature n which has endpoints on the edges of J incident
to v and makes an angle 1/n with these edges at the endpoints. Now let e
be an edge of J . There are two consecutive circular arcs V1 and V2 which
have their endpoints on J . We connect these endpoints either by a single
circular arc of very small curvature or a C1 union of 2 circular arcs having
very small curvature. (The choice depends on whether the tangent vectors
to V1 and V2 lie on the same side of e or on opposite sides.) In either case,
these interpolating arcs are replacements for the edges of J . We adjust so
that the resulting union Jn is the desired approcimation. ♠

For j = 1, 2, let {Jj,n} be the sequence constructed in the previous lemma.
We fix constant speed parametrizations αj,n : R/Z → Jj,n which converge
uniformly to αj. The unit tangent map fj,n : R/Z → S1 is defined, con-
tinuous, and piecewise linear once we identify the range with R/Z. The
maps fj,n are nice maps, by construction. By perturbing if necessary, we can
arrange that f1,n and f2,n are unrelated. Define the fiber product

B+,n = H(f1,n, f2,n). (8)

Lemma 5.5 On a subsequence, the set B+,n converges in the Hausdorff

topology to B+.

Proof: Since {B+,n} is a sequence of compact subsets of the compact metric
space T , we can pass to a convergent subsequence. The limit B′ ⊂ T is again
a compact subset of T . We want to show that B′ = B+.

A point (p1, p2) ∈ B+ has the property that some tangent line to J1 at
α1(p1) is parallel to, and points in the same direction as, some tangent line
to J2 at α2(p2). But any point in B′ also has this property by continuity.
Hence B′ ⊂ B+.
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Consider a point (p1, p2) ∈ B+. We will consider the case when α1(p1) is
a vertex of J1. The other case, when α2(p2) is a vertex of J2, has the same
treatment. Let ℓ1 and ℓ2 be the parallel tangent lines at α1(p1) and α2(p2)
respectively. The points α1,n(p1) and α2,n(p2) respectively are very close to
α1(p1) and α2(p2) when n is large. By construction, the corresponding tan-
gent lines ℓ1,n and ℓ2,n are also close to ℓ1 and ℓ2 respectively. These lines
may not be pointing precisely in the same direction, so it may not be true
that (p1, p2) ∈ B+,n. Note, however, that ℓ1 is tangent to neither of the edges
incident to α1(p1). Given the nature of our construction, we can move p1
very slightly to a new point p′1 such that the corresponding tangent line ℓ′n,1
at αn,1(p1) does point in the same direction as ℓ2,n. In other words, the point
(p′1, p2) ∈ B+,n is very close to (p1, p2). Hence B+ ⊂ B′. ♠

We pass to a subsequence 1 so that B+,n → B+.

Lemma 5.6 (Short Arcs) If {xn} and {yn} are two sequences of points in

B+,n that converge to the same point of B+, then some arc in B+,n of length

Ln connects xn to yn, and Ln → 0.

Proof: Let (p1, p2) ∈ B+ be the limit point. There are 3 cases, depending
on whether α1(p1) is a vertex of J1 or α2(p2) is a vertex of J2, or both. We
will treat the case when α2(p1) is a vertex of J2 and α1(p1) is not a vertex of
J1. The other cases have similar treatments.

Let us write xn = (p1,n(0), p2,n(0)) and yn = (p1,n(1), p2,n(1)). Let p1,n(t)
be the path which interpolates linearly between p1,n(0) and p1,n(1). The
path t → p1,n(t) is very short, and the corresponding tangent line ℓ1,n(t) also
changes very little. At the same time, when we move p2,n(0) slightly the
tangent corresponding line ℓ2,n moves quite a bit, given the fact that this
line is tangent to a circular arc of curvature n. Moreover, the dependence
is monotonic. Hence, there is a unique point p1,n(t) very near both p1,n(0)
and p1,n(1), such that ℓn,1(t) points in the same direction as ℓ2,n(t). Given
the uniqueness, the path t → p1,n(t) is a continuous path which interpolates
between p1,n(0) and p1,n(1). We have constructed a short path in Bn,+ con-
necting our two points xn and yn. ♠

1In the previous result we did not really need to pass to a subsequence to get conver-
gence, but we don’t want to take the trouble to show that the original sequence converges.
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5.5 Applying the Fiber Product Lemma

Now we finish the proof of the Folding Lemma.

Lemma 5.7 B+ has exactly one essential component, and when this com-

ponent is suitably oriented it represents (1, 1) in H1(T ).

Figure 5.1: Some bad Hausdorff convergence

Proof: The Short Arc Lemma rules out the kinds of Hausdorff convergence
depicted in Figure 5.1. The pictures are meant to take place inside a cylinder
– the vertical sides in the picture are identified. On the left, a sequence of
inessential loops converges to a proper arc of some loop. On the right, a
sequence of inessential loops converges to an essential loop. Both kinds of
convergence involve a kind of folding which brings together points that are
not joined by short arcs.

By the Fiber Product Lemma, B+,n has one essential component βn. The
sequence {βn} converges on a subsequence to a subset of some component
β of B+. The component β must be essential, because otherwise for large
n the essential loop βn would fail to intersect some representative of (say)
(1,−1) in H1(T ) that avoids β. Since βn represents (1, 1) in H1(T ) for all n,
the component β, suitably oriented, must also represent (1, 1).

Let β′ be any other component of B+. We want to show that β′ is inessen-
tial. Since there is a uniform upper bound on the number of components of
B+,n (in terms of the number of sides of the polygons) and since all of β′

is contained in the Hausdorff limit of B+,n, there is some sequence {β′
n} of

components converges to an uncountable closed subset β′′ of β′. By the Fiber
Product Lemma, β′

n is inessential because β′
n 6= βn. Either β

′′ = β′ or β′′ is a
proper arc. In the latter case, we have the first kind of convergence depicted
in Figure 5.1. This is impossible, so β′′ = β′. If β′ is essential, we have the
convergence shown on the right side of Figure 5.1. Hence β′ is inessential. ♠
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6 Putting it Together

The main goal of this chapter is to prove Theorem 1.7. After we finish this,
we will prove Lemma 2.8.

6.1 Manifold Structure

Say that a λ-triangle is a triangle of shape λ. Each λ triangle (p1, p2, p3)
determines 3 similarities S1, S2, S3, where

Sj(pj) = pj, Sj(pj+1) = pj+2. (9)

Here the indices are taken mod 3. The linear part of these similarities does
not depend on the representative triangle.

Let E = (E1, E2, E3) be a triple of segments, not necessarily distinct, and
let L = (L1, L2, L3) be the triple of lines extending them. We say that L
is unrelated to λ if Sj(Lj+1) ∩ Lj+2 is a single point for at least one index
j. This condition only depends on λ and not on the chosen representative
triangle. If we fix L, then L is unrelated to all but at most one λ ∈ C −R.

We say that a λ-triangle is inscribed in E (respectively L) if the kth
vertex of the triangle lies in Lk (respectively Ek) for k = 1, 2, 3. We allow
the degenerate possibility that the the triangle is just 3 identical points. Let
I(L, λ) denote the space of triangles of shape λ inscribed in L. Likewise
define I(L,E). We say that a brick is the product of 3 segments.

Lemma 6.1 If L is unrelated to λ then I(L, λ) is a straight line. Hence

I(E, λ) is the intersection of a straight line and the brick E1 × E2 × E3.

Proof: Given a λ-triangle with vertices (p1, p2, p3), let S1 be the similarity
such that S1(p1) = p1 and S1(p2) = p3. Note that S1 only depends on the
point p1 and the shape λ. We cyclically relabel so S1(L2)∩L3 is a single point.
If we place p1 ∈ L1 then there are unique points p2 ∈ L2 and p2 ∈ L3 such
that p1, p2, p3 is inscribed in L, namely p3 = S1(L2) ∩ L3 and p2 = S−1

1 (p3).
The point p2, p3 vary linearly with p1. This constructs a line of inscribed
triangles, and every other inscribed triangle is among the ones constructed.
♠
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Lemma 6.2 Let J be some obtuse polygon. There is a finite union LJ,1 of

lines such that if λ ∈ T − LJ,1 and J is angle-adapted to λ, then I(J, λ) is a
finite union of pairwise disjoint embedded polygons in C

3.

Proof: Say that the lines of J are the lines extending the edges of J . There
is a finite list of exceptional parameters λ1, ..., λm such that some triple of
lines of J is not unrelated to λj. We arbitrarily pick lines α1, ..., αm with
λj ∈ αj.

We call a λ-triangle singularly inscribed in J if at least 2 of the vertices
of the triangle are also vertices of J . For each triple (v1, v2, e), where v1, v2
are vertices of J and e is an edge of J , there is a union α of 3 lines with the
following property. If τ is a triangle of shape λ having vertices v1, v2 and the
third vertex in e, then λ ∈ α. Taking the union over all triples, we define

LJ,1 = α1 ∪ ... ∪ αn ∪
⋃

α(v1, v2, e).

Now we take λ ∈ T − LJ,1. We say that the bricks of J are the products
E1 × E2 × E3 where E1, E2, E3 are edges of J . We call the brick good if
E1 ∩ E2 ∩ E3 = ∅ and otherwise bad. In the bad case, two of the edges
coincide and the third one is adjacent to these. The product J ×J ×J ⊂ C

3

has a decomposition into bricks, each one the product of edges of J . Since J
is angle adapted to λ, the set I(J, λ) is disjoint from all the bad bricks.

Let B be a good brick that intersects I(J, λ) and let b = B ∩ I(J, λ). By
Lemma 6.1, the set b is a line segment, the intersection of a straight line with
B. Since J has no singularly inscribed triangles of shape λ, the endpoints of
b must lie in the interiors of the 2-dimensional faces of B. Let b0 be one of
the endpoints of b. There is a unique second brick B′ such that b0 ∈ B′. The
brick B′ is also good because it intersects I(J, λ). But then b′ = B′ ∩ I(J, λ)
is also a line segment that has b0 as an endpoint. This analysis shows that
I(J, λ) is an embedded graph with straight line edges and all vertex degrees
equal to 2. ♠

Remark: If (J, λ) satisfy all the conditions above except that there is exactly
1 singularly inscribed triangle sharing exactly 2 vertices with J , then the
corresponding point of I(J, λ) lies in a 1 dimensional edge of our brick tiling,
and either 0, or 2, or 4 edges of I(J, λ) meet at this point. The number of
edges must be even because the sum of degrees of any graph is even, and
I(J, λ) has degree 2 at every other vertex. When there are 4 edges, this is
the simplest kind of non-manifold point in I(J, λ).
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6.2 The Parity Argument

Let (J, λ) be as in Lemma 6.2. We know from Lemma 6.2 that I(J, λ) is a
finite union of polygons. We just have to establish the fact that I(J, λ) has
exactly 1 essential component. In this section we show that I(J, λ) has an
odd number of essential components.

Lemma 6.3 I(J, λ) has an odd number of essential components.

Proof: Let Ω±

3 be the two components of Ω3. Let Ω2 be the set of ordered
and unequal pairs (p1, p2) ∈ J × J . Let

π : Ω3 → Ω2

be the map which forgets the third point. The map π induces an isomorphism
from H1(Ω

±

3 ) → H1(Ω2) and moreover π is injective on I = I(J, λ). Here
The reason here is that the first two points of a triangle of shape λ determine
the whole triangle.

We compactify Ω2 by adding two boundary components. The points near
one component have the form (p1, p2) where p2 immediately follows p1 in the
cyclic order of J , and the points near the other component have the reverse
property. Let Ω2 denote this compactification. Note that an embedded
polygon in Ω2 is homologically nontrivial if and only if it separates the two
boundary components of Ω2.

We partition Ω2 into two sets as follows: Given (p1, p2) ∈ Ω2 we choose
p3 ∈ C so that (p1, p2, p3) is a λ-triangle. We color (p1, p2) red (respectively
blue) if p3 lies in the unbounded (respectively bounded) component of C−J .
With this scheme, Ω2 is partitioned into the red points, the blue points, and
the points of π(I).

Given that J is adapted to λ, all points sufficiently near one boundary
component of Ω2 have one color and all points sufficiently near the other
boundary component have the other color. A generic polygonal path con-
necting one component to the other must therefore intersect π(I). But such
a path intersects each inessential component an even number of times and
each essential component an odd number of times. Hence there are an odd
number of essential components. ♠
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6.3 One Essential Component

Again let (J, λ) be as in Lemma 6.2. Let κ be the number of essential
components of I(J, λ). We know that κ is odd.

We define

J1 = J, J2 =
λ

λ− 1
J, K =

1

1− λ
J. (10)

We let ∆ be the map from Lemma 5.1, the Folding Lemma. This time we
change the sign so that ∆(s1, s2) = s1 − s2. As we remarked in the proof of
the Folding Lemma, this sign change makes no difference for the truth of the
result. We call ∆ the difference map.

There is a finite union LJ,2 of lines such that if λ ∈ T −LJ,2 then no side
of any one of these 3 polygons is parallel to a side of any of the others. This
implies that ∆ is a folding map. By the Component Lemma (Lemma 4.1)
The fold set B of ∆ has exactly 2 essential components.

Let LJ = LJ,1 ∪ LJ,2. Below we will prove that when λ ∈ T − LJ the
polygon K is adapted to ∆, in the sense of the Component Lemma, and that
A has κ+1 essential components. But now the Component Lemma (Lemma
5.1) says that the number of essential components of A is at most the number
of essential components of B. That is, κ + 1 ≤ 2. Since κ is odd, we have
κ = 1.

Lemma 6.4 The polygon K is adapted to ∆ and ∆−1(K) has κ+1 essential

components.

Proof: The no-parallel-sides condition guarantees that A = ∆−1(K) is
transverse to the fold set B.

Define
Tp(z) = λ(z − p) + p. (11)

A triple of points (p1, p2, p3) has shape λ if and only if the points are unequal
and Tp1(p2) = p3. Consider now a pair (p1, q2) ∈ J1 × J2. We let

p2 =
λ− 1

λ
q2 ∈ J1. (12)

We compute
Tp1(p2) = (1− λ)(p1 − q2). (13)
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Therefore, p1, p2, and p3 = Tp1(p2) are the vertices of a triangle in I(J, λ) if
and only if

q2 6=
λ

λ− 1
p1, p1 − q2 ∈ K. (14)

Assuming that we have picked parametrizations α1 and α2 of J1 and J2
respectively, we let s1, s2 be such that p1 = α1(s1) and q2 = α2(s2). Equation
14 tells us that ∆(s1, s2) ∈ K if and only if one of two conditions holds:

1. q2 = λ/(λ− 1)p1, or

2. p1 and p2 are the first two vertices of a triangle in I(J, λ).

The pairs (s1, s2) satisfying Condition 1 correspond to a single essential com-
ponent of ∆−1(K). The remaining pairs, the ones which satisfy Condition 2,
correspond to points in I(J, λ). So, ∆−1(K) has 1-essential component com-
ing from Condition 1 and κ essential components coming from Condition 2.
This shows that ∆−1(K) has κ+ 1 essential components.

The map
(s1, s2) → (p1, q2) → (p1, p2)

gives an affine homeomorphism between all but one of the components of
∆−1(K) and the components of I(J, λ). The one remaining component is
the one coming from Condition 1 above. It is an embedded polygon disjoint
from all these. This polygon represents (1, 1) in H1(T ); it is essentially the
“main diagonal” when J2 is identified with J1. Therefore ∆−1(K) is a finite
union of pairwise disjoint embedded polygons. Since one of the essential
components (namely the exceptional one just considered) represents (1, 1) in
H1(T ) and since the other essential components are disjoint from this one,
they also represent (1, 1) in H1(T ) when suitably oriented.

As we trace out a (1, 1) component in the positive orientation, the corre-
sponding point p1 winds once around J1 counter-clockwise. But then so do
p2 and p3. Since p3 = (1 − λ)(p1 − p2), we see that p1 − p2 winds counter-
clockwise around K. Hence ∆ has degree 1 with respect to the preferred
orientations.

This establishes that K is adapted to the folding map ∆. ♠

Remark: Inspecting the conditions for the lines in LJ , we see that there
exist polygons J ′ as close as like to J such that LJ and LJ have no lines in
common. This means that we can vary J continuously so that each line in
LJ either varies in a non-constant continuous family or instantly disappears.
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6.4 Proof of Lemma 2.8

In his section we prove Lemma 2.8, the technical result we used in §2. Let J
be some polygonal Jordan loop and let LJ be the finite union of lines defined
in the previous section. Let (J,A) be as in Lemma 2.8.

Let t → λt be a constant speed parameterization of A. The two endpoints
are λ0 and λ1. Since a line can intersect a circle (or an unequal line) at most
twice, there are finitely many values 0 < t1, ..., tk < 1 such that (J, tj) does
not satisfy the conclusion of Theorem 1.7.

Let PJ be the union of the exceptional parameters from the proof of
Lemma 6.2 and the points that lie in more than one line of LJ . The set PJ

finite. If A avoids PJ , the space I(J, tj) has the structure discussed in the
remark after the proof of Lemma 6.2 for each j = 1, ..., k.

Let Υ0, ...,Υk be components of [0, 1]− (t1 ∪ ... ∪ tk). Let

Bj =
⋃

t∈Υj

βt.

Here βt is the essential component of It = I(J, λt).
Inspecting the proof of Lemma 6.2 we see that βt varies continuously for

t ∈ Υj. Hence Bj is a topological (and indeed piecewise algebraic) cylinder.
These sets are path connected. Given the structure of I(J, tj), and the result
of Theorem 1.7, here are the only possible topological changes to It as t
passes through a special value.

• An inessential component is born or dies.

• Two inessential components merge into one, or the reverse.

• The essential component merges with an inessential component to form
the new essential component, or the reverse.

From this analysis of the topological transitions, we see that Bj ∩ Bj+1 is
either a polygonal loop in Itj or two polygonal loops of Itj joined together at
the exceptional vertex. Hence

B =
k⋃

j=0

Bk

is a path connected subset of I(J,A) which contains both β0 and β1. This
completes the proof of Lemma 2.8.
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