(Euclidean)

DIMERS AND GEOMETRY

Richard Kenyon (Brown University)

Based on work with

A. Abrams (WLU), A. Goncharov (Yale), S. Sheffield (MIT)
1. Spaces of t-graphs and planar graph embeddings.

2. Tilings with convex polygons of fixed slopes.

3. Integrable systems of t-graphs
Thm[Kasteleyn(1965)]:

$$\det K = \sum_{\text{dimer covers } m} wt(m).$$

Q. What is the geometry underlying K?
A \textit{t-graph in a polygon} is a union of noncrossing line segments in which every endpoint lies on another segment or the boundary.

A t-graph is \textit{generic} if no two endpoints are equal.

For generic t-graphs,

\[1 = \chi(\text{open disk}) = \#(\text{faces}) - \#(\text{segments}). \]
local pictures:

- generic
- nongeneric
- generic
- nongeneric
- generic
- nongeneric
- generic
- nongeneric
- generic
Associated to a t-graph is a bipartite graph...
...which has dimer covers (when we remove all but one outer edge).
Thm: The space of t-graphs with n segments, fixed boundary and fixed combinatorics is homeomorphic to \mathbb{R}^{2n}.

Global coordinates are *biratio coordinates* $\{X_i\}$.

Proof ideas: linear algebra and the maximum principle. □
At a degenerate vertex, biratios are defined by continuity:

\[X = \frac{c \sin \theta_3}{a \sin \theta_2} \quad Y = \frac{a \sin \theta_1}{b \sin \theta_3} \quad Z = \frac{b \sin \theta_2}{c \sin \theta_1} \]

Note \(XYZ = 1 \).
Special case 1. Convex embeddings of graphs

An embedding of a graph in \mathbb{R}^2 is *convex* if its faces are convex

Thm: The space of convex embeddings of G (with pinned boundary) is homeomorphic to \mathbb{R}^{2V}.

Sunday, March 20, 16
Proof: Take a nearby nonegenerate t-graph and set products of biratios around “vertices” to be 1. Show that any such assignment of biratios results in an embedding. □
Special case 2.

Product of Xs around both faces and vertices is 1.

\implies harmonic embeddings

Spring networks / Resistor networks
Random convex embedding Random harmonic embedding
A random convex embedding does not have a scaling limit shape.
Special case 3. discrete analytic functions (Fix exact shapes up to scale)
e.g. regular hexagons and equilateral triangles (all X’s equal to 1.)
Rectangle tilings

(square young tableau limit shape)
Part 2. T-graphs with fixed slopes
Polygons (closed polygonal curves) with fixed edge slopes

Thm[Thurston]: Given a convex n-gon, the space of closed polygonal curves with the same edge slopes is \mathbb{R}^{n-2}. On this space the area is a quadratic form of signature $(1, n - 3)$.

Proof by picture:

Thus for fixed area there are two components, called *orientations*.
Take a t-graph in polygon with fixed combinatorics and edge slopes.

Thm: For fixed generic slopes and fixed areas, there is exactly one (generalized) tiling for each orientation.

Conjecture [Reality]: Solutions are in a totally real extension field of \(\mathbb{Q}[\text{slopes, areas}] \).
Thm: For each choice of orientation, the set of possible areas (if nonempty) is homeomorphic to a closed ball of dimension F.

Proof: The map $\Psi : \{\text{intercepts}\} \rightarrow \{\text{areas}\}$ is a local homeomorphism because $D\Psi$ is a Kasteleyn matrix for the underlying bipartite graph. Injectivity of Ψ follows from convexity: given two tilings with same areas and same orientations, their average has greater area for each tile. \square
For a rectangle tiling, *all* areas possible (but not all orientations...)

Sunday, March 20, 16
Conclusion:

For any weighted planar bipartite graph, $K = D\Psi$

K is the differential of a (geometrically defined) map.
Q. What are natural probability measures on the space of t-graphs with fixed combinatorics?
Convex embeddings on the torus
you have been watching

DIMERS AND GEOMETRY

thank you for your attention!