
Preface

The title of the book sounds a bit mysterious. Why should anyone read this
book if it presents the subject in a wrong way? What is particularly done
“wrong” in the book?

Before answering these questions, let me first describe the target au-
dience of this text. This book appeared as lecture notes for the course
“Honors Linear Algebra”. It supposed to be a first linear algebra course for
mathematically advanced students. It is intended for a student who, while
not yet very familiar with abstract reasoning, is willing to study more rigor-
ous mathematics than what is presented in a “cookbook style” calculus type
course. Besides being a first course in linear algebra it is also supposed to be
a first course introducing a student to rigorous proof, formal definitions—in
short, to the style of modern theoretical (abstract) mathematics. The target
audience explains the very specific blend of elementary ideas and concrete
examples, which are usually presented in introductory linear algebra texts
with more abstract definitions and constructions typical for advanced books.

Another specific of the book is that it is not written by or for an alge-
braist. So, I tried to emphasize the topics that are important for analysis,
geometry, probability, etc., and did not include some traditional topics. For
example, I am only considering vector spaces over the fields of real or com-
plex numbers. Linear spaces over other fields are not considered at all, since
I feel time required to introduce and explain abstract fields would be better
spent on some more classical topics, which will be required in other dis-
ciplines. And later, when the students study general fields in an abstract
algebra course they will understand that many of the constructions studied
in this book will also work for general fields.
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Also, I treat only finite-dimensional spaces in this book and a basis
always means a finite basis. The reason is that it is impossible to say some-
thing non-trivial about infinite-dimensional spaces without introducing con-
vergence, norms, completeness etc., i.e. the basics of functional analysis.
And this is definitely a subject for a separate course (text). So, I do not
consider infinite Hamel bases here: they are not needed in most applica-
tions to analysis and geometry, and I feel they belong in an abstract algebra
course.

Notes for the instructor. There are several details that distinguish this
text from standard advanced linear algebra textbooks. First concerns the
definitions of bases, linearly independent, and generating sets. In the book
I first define a basis as a system with the property that any vector admits
a unique representation as a linear combination. And then linear indepen-
dence and generating system properties appear naturally as halves of the
basis property, one being uniqueness and the other being existence of the
representation.

The reason for this approach is that I feel the concept of a basis is a much
more important notion than linear independence: in most applications we
really do not care about linear independence, we need a system to be a basis.
For example, when solving a homogeneous system, we are not just looking
for linearly independent solutions, but for the correct number of linearly
independent solutions, i.e. for a basis in the solution space.

And it is easy to explain to students, why bases are important: they
allow us to introduce coordinates, and work with Rn (or Cn) instead of
working with an abstract vector space. Furthermore, we need coordinates
to perform computations using computers, and computers are well adapted
to working with matrices. Also, I really do not know a simple motivation
for the notion of linear independence.

Another detail is that I introduce linear transformations before teach-
ing how to solve linear systems. A disadvantage is that we did not prove
until Chapter 2 that only a square matrix can be invertible as well as some
other important facts. However, having already defined linear transforma-
tion allows more systematic presentation of row reduction. Also, I spend a
lot of time (two sections) motivating matrix multiplication. I hope that I
explained well why such a strange looking rule of multiplication is, in fact,
a very natural one, and we really do not have any choice here.

Many important facts about bases, linear transformations, etc., like the
fact that any two bases in a vector space have the same number of vectors,
are proved in Chapter 2 by counting pivots in the row reduction. While most
of these facts have “coordinate free” proofs, formally not involving Gaussian
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elimination, a careful analysis of the proofs reveals that the Gaussian elim-
ination and counting of the pivots do not disappear, they are just hidden
in most of the proofs. So, instead of presenting very elegant (but not easy
for a beginner to understand) “coordinate-free” proofs, which are typically
presented in advanced linear algebra books, we use “row reduction” proofs,
more common for the “calculus type” texts. The advantage here is that it is
easy to see the common idea behind all the proofs, and such proofs are easier
to understand and to remember for a reader who is not very mathematically
sophisticated.

I also present in Section 8 of Chapter 2 a simple and easy to remember
formalism for the change of basis formula.

Chapter 3 deals with determinants. I spent a lot of time presenting a
motivation for the determinant, and only much later give formal definitions.
Determinants are introduced as a way to compute volumes. It is shown that
if we allow signed volumes, to make the determinant linear in each column
(and at that point students should be well aware that the linearity helps a
lot, and that allowing negative volumes is a very small price to pay for it),
and assume some very natural properties, then we do not have any choice
and arrive to the classical definition of the determinant. I would like to
emphasize that initially I do not postulate antisymmetry of the determinant;
I deduce it from other very natural properties of volume.

Note, that while formally in Chapters 1–3 I was dealing mainly with real
spaces, everything there holds for complex spaces, and moreover, even for
the spaces over arbitrary fields.

Chapter 4 is an introduction to spectral theory, and that is where the
complex space Cn naturally appears. It was formally defined in the begin-
ning of the book, and the definition of a complex vector space was also given
there, but before Chapter 4 the main object was the real space Rn. Now
the appearance of complex eigenvalues shows that for spectral theory the
most natural space is the complex space Cn, even if we are initially dealing
with real matrices (operators in real spaces). The main accent here is on the
diagonalization, and the notion of a basis of eigesnspaces is also introduced.

Chapter 5 dealing with inner product spaces comes after spectral theory,
because I wanted to do both the complex and the real cases simultaneously,
and spectral theory provides a strong motivation for complex spaces. Other
then the motivation, Chapters 4 and 5 do not depend on each other, and an
instructor may do Chapter 5 first.

Although I present the Jordan canonical form in Chapter 9, I usually
do not have time to cover it during a one-semester course. I prefer to spend
more time on topics discussed in Chapters 6 and 7 such as diagonalization
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of normal and self-adjoint operators, polar and singular values decomposi-
tion, the structure of orthogonal matrices and orientation, and the theory
of quadratic forms.

I feel that these topics are more important for applications, then the
Jordan canonical form, despite the definite beauty of the latter. However, I
added Chapter 9 so the instructor may skip some of the topics in Chapters
6 and 7 and present the Jordan Decomposition Theorem instead.

I also included (new for 2009) Chapter 8, dealing with dual spaces and
tensors. I feel that the material there, especially sections about tensors, is a
bit too advanced for a first year linear algebra course, but some topics (for
example, change of coordinates in the dual space) can be easily included in
the syllabus. And it can be used as an introduction to tensors in a more
advanced course. Note, that the results presented in this chapter are true
for an arbitrary field.

I had tried to present the material in the book rather informally, prefer-
ring intuitive geometric reasoning to formal algebraic manipulations, so to
a purist the book may seem not sufficiently rigorous. Throughout the book
I usually (when it does not lead to the confusion) identify a linear transfor-
mation and its matrix. This allows for a simpler notation, and I feel that
overemphasizing the difference between a transformation and its matrix may
confuse an inexperienced student. Only when the difference is crucial, for
example when analyzing how the matrix of a transformation changes under
the change of the basis, I use a special notation to distinguish between a
transformation and its matrix.
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