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0. Introduction

The (complex) structured singular value µ = µ(A) of a square matrix A
was introduced by J. Doyle in [1], and is defined as follows

µ(A) : =
(
inf{‖∆‖ : ∆ is diagonal, I − A∆ is not invertible}

)−1

=
(
inf{‖∆‖ : ∆ is diagonal, I − ∆A is not invertible}

)−1

Here and below, ‖A‖ always denotes the induced (by the Euclidean norm
in C

n) operator norm of A, i. e. its maximal singular value. Entries of the
matrices A and ∆ are complex, so we deal with complex structured singular
value.

The first equality above is the definition of µ, the second is a simple
exercise in linear algebra.

Note, that if in the definition of µ we take infimum over all matrices,
not only diagonal, we get exactly the norm ‖A‖. On the other hand, if
we take infimum over a smaller set of scalar matrices λI, λ ∈ C, we get
exactly the spectral radius r(A) of the matrix A. So µ(A) can be estimated
as r(A) � µ(A) � ‖A‖.

The structured singular value µ was introduced in connection with robust
control with structured uncertainties, see [1, 2] (we should also mention
papers by M. Safonov [9, 10] where the multivariable stability margin Km(G),
which is essentially the reciprocal of µ, was introduced). Without going into
a lot of details (a reader interested in a detailed introduction into the subject,
with all references and complete history, should look somewhere else, [13]
will be a good reference), let us just remind the reader main ideas.

Consider the system on Fig. 1 with uncertainty ∆ in the feedback loop.
Here G is causal stable LTI (Linear Time Invariant) plant.

An important notion in robust stability is the so called stability margin.
Suppose, that our uncertainty ∆ belongs to some class U of stable causal
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Figure 1. Uncertainty ∆ in the feedback loop

systems. The stability margin

ρ
U
(G) : = inf

∆∈U

{‖∆‖ : the system on Fig. 1 is not stable}

= inf
∆∈U

{‖∆‖ : I − G∆ is not invertible}

(let us remind the reader that the system on Fig. 1 with stable G and ∆ is
stable if and only if I − G∆ is invertible).

The first result in robust stability is the so called Small Gain Theo-
rem, which states (under some technical assumptions), that if the class
of uncertainties U coincides with all causal LTI (or Linear Time Varying,
or Nonlinear Time Invariant, or Nonlinear Time Varying) systems, then
ρ

U
(G) = 1/‖G‖. The Small Gain Theorem was first introduced by G.

Zames [17], where it was shown that ρ
U
(G) � 1/‖G‖. The fact, that the

equality holds, is now well known, although giving a precise reference can
be a problem.

One can consider different classes U of uncertainties. Define the struc-
tured norm (or structured singular value) SN

U
(G) := 1/ρ

U
(G); the name

structured norm is clear from the Small Gain Theorem. Let us mention,
that the structured norm is generally not a norm, the triangle inequality
may fail, so in some respects the term structured singular value seems to be
more appropriate.

The word structured appears here because the notion was introduced for
the situations where uncertainty ∆ has some additional structure. In this
paper we are interested in the case when G is causal LTI system with n
inputs and n outputs, i. e. the multiplication by a (square, n × n) H∞

matrix-function on the vector-valued H2 space, and ∆ is a diagonal LTI
plant, i. e. a multiplication by a diagonal n × n H∞ matrix-function. This
means that we have independent LTI uncertainties in each output channel.

Such situations appear naturally in robust control. For example, the prob-
lem of robust stabilization in the presence of independent LTI uncertainties
in measurements and control channels, see Fig. 2, can be reduced to the
situation in Fig. 1 with ∆ = diag{∆1,∆2}.
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Figure 2. Feedback stabilization with uncertainties in ob-
servation and control channels.

It is a well known result, see, for example [7], that if the class U of
uncertainties consists of (causal) diagonal LTI systems, then

SN
U
(G) = sup

ω∈R

µ(Ĝ(iω)),(0.1)

where Ĝ is the transfer function of the plant G. The corresponding multi-
variable stability margin (which historically was introduced earlier than µ,
see [9]) is usually denoted by Km(G), Km(G) = 1/SN

U
(G).

One can consider uncertainties of more complicated structure, for exam-
ple block diagonal matrices with fixed sizes of blocks, cf [7], and introduce
corresponding µ. The formula (0.1) above is true in this situation as well.

Note, that although transfer functions Ĝ, ∆̂ are real rational matrix func-
tions (i. e. their entries are rational functions with real coefficients), the
values Ĝ(iω), ∆̂(iω) are complex matrices, so in the definition of µ one has
to consider complex matrices.

So, the structured singular value µ is an important characteristic of a
matrix. Unfortunately, it is very hard to compute: µ is defined as a solution
of a non-convex optimization problem, and it is not known how to reduce it
to a convex optimization. Moreover, it is known, see [15], that the compu-
tation of µ is an NP-hard problem, so it is rather unlikely to find effective
algorithms.

The standard way to cope with this difficulty, is to introduce some (easily
computable) upper bound for µ.

Clearly µ(A) � ‖A‖, so ‖A‖ is a trivial (and easily computable) upper
bound. Unfortunately, this upper bound is too conservative: using it brings
us back in the situation of the Small Gain Theorem. And µ was introduced
exactly to improve the Small Gain Theorem by taking into account the
structure of uncertainty.

Also, it is very easy to construct an example of a (2× 2) matrix A , such
that the ratio ‖A‖/µ(A) is as large as one wants. Take, for example A =(

1 R
0 1

)
, R → ∞. Then µ(A) = 1, 1while the norm of A is approximately

|R| (for large R).

1to see that µ(A) = 1 we should notice that the spectral radius of A is 1, and that the
upper bound µ, see the definition below, is easily computable, µ(A) = 1.
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The following quantity gives a closer (and widely used) upper bound for
µ. Let D be an invertible diagonal matrix. Then for diagonal ∆

I − DAD−1∆ = D(I − A∆)D−1,

and so µ(A) = µ(DAD−1) � ‖DAD−1‖.
Therefore

µ(A) := inf{‖DAD−1‖ : D is diadonal and invertible},
is an upper bound for µ, µ(A) � µ(A).

The upper bound µ is also easy to compute: the computation reduces to
a convex optimization problem (solving Linear Matrix Inequalities (LMI)),
see [7].

This µ is much better upper bound. First of all, it was proved by Doyle
[1], see also [7, Section 9], that µ coincide with µ for n � 3, where n is the
size of the matrix A. 2

It is known that for n > 3 the upper bound is a conservative estimate: it
is not difficult to find a matrix A such that µ(A) < µ(A), see [7]. However,
in all numerical experiments the ratio µ(A)/µ(A) was never too big, so it
was conjectured,see [14], that this ratio is always bounded by some absolute
(not depending on dimension) constant, and may be even by 2.

In this paper we show that these conjectures are not true.
The main result is the following theorem

Theorem 0.1. There is a sequence of square (Nn×Nn, Nn → ∞) matrices

An such that lim
n

µ(An)
µ(An)

= ∞.

The paper is organized as follows: in Section 1 we prove an infinitedi-
mensional analog (construct an example) of the main result. We are not
going to discuss whether this analog is a correct one, because in Section 2
we prove the main theorem by discretizing the example from Section 1.

The technique used is quite new for control theory.
The example in Section 1 is based on standard facts in the theory of

singular integral equations. I will present them without proofs, since they
can be found in many textbooks.

The discretization is much more involved, although the experts in the
field (of singular integral equations) would definitely recognize the ideas
from localization technique for finite section methods. However, standard
results would not work in our case, and one has to “push existing technique
to a limit” to prove Theorem 0.1.

One can also consider different classes of diagonal uncertainties ∆, such
us Linear Time Varying, or Nonlinear Time Invariant, or Nonlinear Time
Varying, introduce corresponding structured norms and their upper bounds.
This problem is already solved, see [6, 5, 12, 8]. The upper bound is the

2In [1] general (block diagonal) case was also considered, and it was shown, in particular,
that for ∆ with n non-repeating diagonal blocks again µ coincide with µ for n � 3.
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same for all three above mentioned classes of uncertainties and it coincides
with corresponding structured norms.

This illustrates a well known principle in robust stability, that the more
you know about uncertainty, the more difficult mathematical problem you
have to solve to find the stability margin.

In conclusion I should mention some problems that are still open.
First of all the example constructed does not give any idea of how fast the

ratio µ/µ can grow with the dimension. It was shown by A. Megretski [4],
that the ratio µ/µ has upper bound C · n, where C is an absolute constant.

I suspect that this estimate is very conservative, and that sharp estimate
should grow much slower, like C log n. That would explain why numerical
experiment did not yield large ratio µ/µ.

So, the problem is to find (more or less) sharp estimates on the ratio µ/µ
(both lower and upper bounds) remains open. Both, asymptotic estimates,
as well as estimates for small n are interesting.

Another problem is to find an algebraic example, not requiring advanced
“hard analysis”. One of the possible ways here is to take a trivial discretiza-
tion of the example in Section 1 (replace integrals by Riemann sums) and
show directly that the resulting operators (matrices) have small µ. Note,
that it is not known to me whether such operators indeed have small µ.

Acknowledgment. I am deeply grateful to A. Megretski, who brought
my attention to this problems. Stimulating discussions with him helped me
a lot in solving the problem and preparing the manuscript.

1. An infinitedimensional analog of the main result

Let us first solve the problem, which is a infinitedimensional analog of
our. Let L2 = L2(ν), where ν is some measure. For an operator A on L2(ν)
define it structured singular value µ(A) as

µ(A) =
(
inf{‖ϕ‖∞ : ϕ ∈ L∞(µ), I − MϕA is not invertible}

)−1
;

here Mϕ is the multiplication operator by ϕ, Mϕf = ϕf . Sometimes, when
it will not lead to a confusion, we will use the symbol ϕ the operator Mϕ.
For example, ϕA always denotes the operator MϕA, but we will use AMϕ,
and not Aϕ, to avoid ambiguity.

We can also define an upper bound µ(A) by

µ(A) := inf{‖MψAM−1
ψ ‖ : ψ, ψ−1 ∈ L∞(µ)};

here again Mψ denotes the multiplication operators by ψ.
A simple observation: if ν is a finite combination of atoms, then the

operator A is an operator in a finitedimensional space (matrix), and the
definitions of µ and µ coincide with ones given above in Section 0.

We will construct a measure ν on the complex plane C and an operator

A on L2(ν) such that the ratio
µ(A)
µ(A)

is as large as we want.
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Let Γ be a simple C2-smooth closed curve on C. Our measure ν is just the
arclength on Γ. Consider the singular integral operator (Cauchy integral)
S = SΓ defined by

(Sf)(t) =
1
πi

p.v.
∫
Γ

f(s)
s − t

ds

Clearly, the operator is well defined on smooth functions. It is also well
known that for any f ∈ L2 the principal value Sf exists a. e., and that the
operator S is bounded on L2(ν), see for example [3].

The structure of the operator S is well known. Namely, let

P =
1
2
(I + S), Q =

1
2
(I − S).

Then S = P − Q and P , Q are complimentary projections (P + Q = I,
P 2 = P , Q2 = Q), not necessarily orthogonal. The projections P and Q
are projections onto subspaces L2

± = L2(Γ)±, L2
± := clos

L2 Rat±; here Rat+
denotes all rational functions with poles outside of Γ, and Rat− consists of
all rational functions f , f(∞) = 0 with poles inside Γ.

If Γ is the unit circle, the spaces L2
± coincide with classical Hardy spaces

H2
±, and projections P and Q are orthogonal.
Operator S can be defined for non-compact contours Γ as well. An im-

portant case we will need is when Γ is just the real line R. In this case the
projections P and Q are orthogonal projections onto the Hardy spaces in
the upper and lower half planes respectively. Since the projections P and Q
are orthogonal, ‖SR‖ = 1. We will use this fact in what follows.

Theorem 1.1. Let Γ be a simple C2-smooth closed curve in C. Let ϕ ∈
L∞(Γ), ‖ϕ‖∞ < 1. Then the operator I − ϕSΓ is invertible.

Proof. The theorem is just a restatement of a well known fact about singular
integral equations. Using the fact that S = P −Q, I = P + Q we can write

I−ϕS = P +Q−ϕ (P +Q) = (1−ϕ)P +(1+ϕ)Q = (1+ϕ)
(1 − ϕ

1 + ϕ
P +Q

)
.

Since ‖ϕ‖∞ < 1, the operator of multiplication by 1+ϕ is invertible. There-
fore I−ϕS is invertible if and only if the operator aP +Q is invertible, where

a =
1 − ϕ

1 + ϕ
.

Note, that since ‖ϕ‖∞ < 1, we have a, a−1 ∈ L∞, and moreover, the
range of a lies in a sector with vertex at the origin and the opening angle
strictly less than π.

A well known theorem about singular integral operators, see for example
[3, Theorem 3.1 in Chapter 12] says that even under weaker assumptions on
the curve Γ, the operator aP +Q is invertible if a, a−1 ∈ L∞, and the range
of a lies in a sector with vertex at the origin and the opening angle strictly
less than π.
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Corollary 1.2. For a simple C2-smooth closed simple curve Γ ⊂ C, we have
µ(S) = 1, where S = SΓ is the Cauchy integral operator defined above.

Proof. Theorem 1.1 says that for ϕ ∈ L∞, such that ‖ϕ‖∞ < 1 the operator
I−MϕSΓ is invertible. Therefore, if I−MϕSΓ is not invertible, then ‖ϕ‖∞ �
1, and thus µ(SΓ) � 1.

Since the operator S is the difference of two (skew) projections, S = P−Q,
its spectrum consist of two points, −1 and 1. Hence, the operator I −MϕS
is not invertible for ϕ ≡ 1, so µ(S) � 1.

Let us now show that inf{‖MψSM−1
ψ ‖ : ψ, ψ−1 ∈ L∞} can be as large

as we want. For a curve Γ let us define its Ahlfors constant A(Γ) by

A(Γ) = sup
|Br(x) ∩ Γ|

r
;

here the supremum is taken over all discs Br(x) = {z ∈ C : |z−x| < r}, and
|X| denotes the length (one dimensional Hausdorff measure)3of the set X.

Theorem 1.3. For any ψ ∈ L∞(Γ) with ψ−1 ∈ L∞(Γ) we have

‖MψSΓM−1
ψ ‖ � c · A(Γ),

where c > 0 is an absolute constant.

This theorem immediately implies the following infinitedimensional ana-
logue of the main result of the paper.

Corollary 1.4. Given (an arbitrary large) R > 0 there exists a C2-smooth
simple closed contour Γ such that µ(SΓ)/µ(SΓ) > R.

Proof. According to Corollary 1.2 µ(SΓ) = 1. On the other hand, Theorem
1.3 implies that µ(Γ) � cA(Γ), where c is the absolute constant from the
theorem. And it is very easy to construct a C2-smooth contour Γ with
arbitrary large Ahlfors constant A(Γ) (greater than R/c in our case), see
Fig. 3.

Proof of Theorem 1.3. First of all pick two orthogonal directions such that
the contour Γ does not contain a straight segment parallel to one of them. It
is always possible, because a smooth contour can contain at most countably
many straight segments.

Let Br(x) be a disc such that |Γ∩Br(x)| � 0.8A(Γ)r. Using straight lines
parallel to the chosen directions we can split the disc Br(x) into four parts
Bk, k = 1, ..., 4, such that |Γ ∩ Bk| = |Γ ∩ Br(x)|/4, see Fig. 4. (On this
figure we first used a horizontal line to split Γ ∩ Br(x) into halves of equal
length, and then used the vertical lines to split each half.)

Among the parts Bk pick two that touch at most at a point (shaded
regions on Fig. 4). Without loss of generality we can call them B1 and B2.

3reader not familiar with the notion of Hausdorff measure should not worry, because
in our case the set X consists of finitely many smooth curves, and its length is the sum of
the lengths of the curves



8 S. TREIL

Figure 3. A curve Γ with large Ahlfors constant A(Γ)
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Figure 4. Each of four parts of the disk contains equal
length of Γ
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Clearly the set {z1 − z2 : z1,2 ∈ B1,2} is contained in a sector with vertex
at the origin and with an opening angle at most π/2. Therefore there exist
ξ ∈ C, |ξ| = 1 such that

Re
(
ξ · 1

z1 − z2

)
� 1√

2
· 1
|z1 − z2|

� 1
2
√

2r
, ∀z1,2 ∈ B1,2 .(1.1)

Let Γ1,2 := Γ ∩ B1,2. Pick ψ ∈ L∞ such that ψ−1 ∈ L∞. Without loss of
generality we can assume that∫

Γ1

|ψ|2|dz| �
∫
Γ2

|ψ|2|dz|

To estimate the norm of the operator MψSM−1
ψ , pick two test functions

f := (ψ)−1χ
Γ1

|dz|
dz

g := ψχ
Γ2

;

here χ
Γ

denotes the characteristic function (indicator) of the set Γ,

χ
Γ
(z) =

{
1, x ∈ Γ
0, x /∈ Γ,

and
|dz|
dz

is the reciprocal of the direction
dz

|dz| of the tangent line to Γ at

the point z. Note, that
∣∣|dz|/dz

∣∣ = 1. Note also that

‖f‖2
2 =

∫
Γ1

|ψ|−2|dz|, ‖g‖2
2 =

∫
Γ2

|ψ|2|dz|.

We can estimate using (1.1)

∣∣(MψSM−1
ψ f, g)

∣∣ =
1
π

∣∣∣ ∫
Γ2

(∫
Γ1

f(z1)
z1 − z2

dz1

)
g(z2) |dz2|

∣∣∣
=

1
π

∣∣∣ ∫∫
Γ1×Γ2

ξ · |ψ(z1)|−2|ψ(z2)|2
z1 − z2

|dz1||dz2|
∣∣∣

� 1
π
· 1
2
√

2 · r

∫
Γ1

|ψ|−2|dz1| ·
∫

Γ2

|ψ|2 |dz2|

=
1
π
· 1
2
√

2 · r

(∫
Γ1

|ψ|−2|dz1| ·
∫

Γ2

|ψ|2 |dz2|
)1/2

‖f‖2‖g‖2

Cauchy–Schwartz inequality implies

|Γ1|2 =
( ∫

Γ1

1 |dz|
)2

�
∫

Γ1

|ψ|−2|dz| ·
∫

Γ1

|ψ|2 |dz|

�
∫

Γ1

|ψ|−2|dz| ·
∫

Γ2

|ψ|2 |dz|
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(in the last inequality we used the assumption that
∫
Γ1

|ψ|2|dz| �∫
Γ2

|ψ|2|dz|).
So we get ∣∣(MψSM−1

ψ f, g)
∣∣ � |Γ1|

2
√

2πr
‖f‖2‖g‖2 .

By the construction

|Γ1| = |Γ ∩ Br(x)| � 1
4
r · 0.8A(Γ)

so ‖MψSM−1
ψ ‖ � 1

10
√

2π
A(Γ).

2. The finitedimensional case

In this section we are going to show how to construct a finitedimensional
operator (matrix) A with arbitrary large ratio µ(A)/µ(A). The operator we
construct is just a discretization of the operator S = SΓ from the previous
section.

For the curve Γ from the previous section consider the sequence of its
partitions Pn into finitely many arcs. For the simplicity we assume that
each partition Pn is a refinement of the previous Pn1 . We also assume that
the maximal length of an arc in the partition Pn tends to 0 as n → ∞.

Let Pn be the averaging operators,

Pnf =
N(n)∑
k=1

( 1
|∆n

k |

∫
∆n

k

f(z) |dz|
)
χ

∆n
k

,

where ∆n
k , k = 1, 2, ..., N(n) are the arcs of the partition Pn.

Clearly, Pn are orthogonal projections on L2(Γ). Let Xn := RangePn =
PnL2 (i. e. Xn consists of the functions constant on the arcs of the partition
Pn). Define operators Sn by

Sn = PnS
∣∣ Xn.

Operators Sn are operators on finitedimensional spaces (matrices). Consider
a natural orthonormal basis {|∆n

k |−1/2χ
∆n

k
: k = 1, 2, ..., N(n)} in Xn. We

can treat the operator Sn as matrix in this natural basis. Diagonal operators
in this basis are just multiplications by functions ϕ ∈ Xn.

Modifying a little the reasoning in Theorem 1.3, we can show that

lim
n

(
inf{‖DSnD−1‖ : D is diagonal}

)
� cA(Γ).(2.1)

The main technical difficulty here is that the curve Γ is now “quantized”,
so to get the estimate we need only count arcs ∆n

k completely contained in
regions B1, B2. But this difficulty is easy to overcome: as n → ∞ the total
length of arcs ∆n

k that is intersected by the lines tends to 0. We leave all
technical details here to the reader.
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We are going to show that lim supn µ(Sn) � 10. Together with (2.1) this
implies that the ratio µ(Sn)/µ(Sn) can be made as large as we want (by
picking an appropriate contour Γ and sufficiently large n).

We will show that (given a sequence of partitions Pn) there exists N > 0
such that for all n � n and all ϕn ∈ Xn, ‖ϕn‖∞ � 0.1 the operators
In − ϕnSn are invertible.

Suppose, that is not true. Then there exists a subsequence nk → ∞ such
that for any n in this subsequence there exists a vector fn ∈ Xn and a
function ϕn ∈ Xn, ‖ϕn‖∞ � 0.1, such that fn = ϕnSnfn, and therefore

|fn(t)| � 0.1 · |(Snfn)(t)| ∀t ∈ Γ.(2.2)

By taking a subsequence, we can always assume that (2.2) holds for all
n > N . Let us show that this is impossible.

We need few technical lemmas.
For a set ∆ let E(∆) denote the operator of multiplication by χ

∆
,

E(∆)f := χ
∆

f .

Lemma 2.1 (Local norm lemma). For any point τ ∈ Γ and any sequence
of arcs ∆n � τ such that |∆n| → 0 we have

lim sup
n→∞

‖E(∆n)SE(∆n)‖ � 1

Note, that it is possible to prove that limn ‖E(∆n)SE(∆n)‖ = 1, but we
will only use the statement of the lemma.

Proof. The proof is based on the fact that the operator behave S is locally
almost as the operator S

R
, which has norm 1.

To write a formal proof, consider an arc ∆ ⊂ Γ containing all ∆n. Let
ϕ : ∆′ → ∆ be the arc-length parametrization of the arc ∆. Let ∆′

n :=
ϕ−1(∆n). Clearly, |∆′

n| = |∆n| → 0.
Define the unitary operator U : L2(∆′) → L2(∆), where ∆′ = ϕ−1(∆) by

Uf = f ◦ ϕ. The restriction of U onto L2(∆′
n) is a unitary operator from

L2(∆′
n) onto L2(∆′

n).
Let S̃ := U−1E(∆)SE(∆)U . One can write

[S̃E(∆′
n)f ](t) =

1
πi

∫
∆′

n

ϕ′(s)
ϕ(s) − ϕ(t)

f(ϕ(s)) ds, t ∈ ∆′.

One can estimate∣∣∣∣∣ 1
s − t

− ϕ′(s)
ϕ(s) − ϕ(t)

∣∣∣∣∣ =

∣∣∣∣∣ϕ(s) − ϕ(t) − ϕ′(s)(s − t)
(s − t)(ϕ(s) − ϕ(t))

∣∣∣∣∣ � Const,

since ϕ(s) is C2-smooth. This implies that

‖E(∆′
n)S̃E(∆′

n) − E(∆′
n)S

R
E(∆′

n)‖ → 0.

But we know that ‖SR‖ = 1, and the lemma is proved.
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Lemma 2.2 (Localization Principle). Let S = SΓ, where Γ is a closed recti-
fiable curve (not necessarily smooth). Suppose that ∆1,∆2 ⊂ Γ,
dist(∆1,∆2) > 0. Then the operator E(∆1)SE(∆2) is compact.

Proof. Trivial, since the operator E(∆1)SE(∆2) is an integral operator with
the continuous kernel.

Let us remind that the essential norm ‖A‖ess of an operator A is the
distance from the operator A to compact operators.

Lemma 2.3 (Essential Norm Lemma).

‖S
Γ
‖ess � 2

Proof. Pick ε > 0. Applying Lemma 2.1 find for each point τ ∈ Γ an open
arc ∆, τ ⊂ ∆ such that ‖E(∆)SE(∆)‖ � 1 + ε. Pick a finite covering ∆k,
k = 1, 2, ..., N of Γ by such arcs. Since Γ is a one-dimensional set, we can
always chose a covering such that each point of Γ is covered by at most 2
arcs ∆k.

Split Γ into finitely many disjoint arcs ∆′
k, k = 1, 2, ..., N such that each

arc ∆′
k is strictly inside ∆k (i. e. such that dist(∆′

k,Γ \ ∆k) > 0). Then

S =
∑

k

SE(∆′
k) =

∑
k

E(∆k)SE(∆′
k)

∑
k

E(Γ \ ∆k)SE(∆′
k).

The norm of the first sum is estimated by 2(1 + ε), the second sum is a
compact operator. Therefore ‖S‖ess � 2 + 2ε. Since the inequality holds for
any ε > 0, the lemma is proved.

Lemma 2.4. Let a sequence fn of vectors in a Hilbert space converge weakly
to a vector f . Then

lim sup
n→∞

‖fn‖2 = ‖f‖2 + lim sup
n→∞

‖f − fn‖2.

Proof. Let P be the orthogonal projection onto the linear span of f . The
condition fn

w→ f implies ‖f − Pfn‖ → 0. The lemma follows immediately.

Suppose now that we found a sequence of vectors fn ∈ Xn, normalized
by ‖fn‖2 = 1 and such, that

|fn(t)| � 0.1 · |(Snfn)(t)| ∀t ∈ Γ.(2.3)

Taking a subsequence, if necessary, we can assume weak convergence fn
w→ f .

Consider the simple case f = 0 first. The condition |fn(t)| � 0.1 ·
|(Snfn)(t)| implies that ‖fn‖2 � 0.1‖PnSfn‖2 � 0.1‖Sfn‖2.

On the other hand, by Lemma 2.3, there exists a compact operator K
such that ‖S − K‖ � 3. Therefore

1 = lim sup
n→∞

‖fn‖2 � 0.1 lim sup
n→∞

‖Sfn‖2 = 0.1 lim sup
n→∞

‖(S − K)fn‖2 � 0.3,

and we get a contradiction!
Let us now suppose that f �= 0.
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We will say that an arc ∆ ⊂ Γ agree with the sequence of partitions Pn

if ∆ is a union of arcs ∆n
k from some partition Pn. If an arc ∆ agree with

the sequence of partitions Pn, the inequality (2.3) implies

10 lim sup
n→∞

‖E(∆)fn‖2 � lim sup
n→∞

‖E(∆)PnSfn‖2

� lim sup
n→∞

‖E(∆)Sfn‖2

� lim sup
n→∞

‖E(∆)Sf‖2 + lim sup
n→∞

‖E(∆)S(f − fn)‖2

Let gn := f −fn. Clearly gn → 0 weakly, and lim supn ‖gn‖2
2 = 1−‖f‖2

2 �
1, see Lemma 2.4.

In the following lemma the sequence gn
w→ 0 is supposed to be fixed.

Lemma 2.5. For any point τ ∈ Γ and any positive ε, δ, there exists an arc
∆ � τ , |∆| � ε, which agree with Pn and such that

lim sup
n→∞

‖E(∆)Sgn‖2 � 2 lim sup
n→∞

‖E(∆)gn‖2 + |∆| · δ.

Proof. For a measurable set ∆ define ρ(∆) := lim supn ‖E(∆)gn‖2. Clearly,
ρ(·) is a subadditive function, ρ(∆1 ∪∆2) � ρ(∆1)+ ρ(∆2). By Lemma 2.1,
for any sufficiently small ∆′ (|∆′| < α(τ)) we have

lim sup
n

‖E(∆′)SE(∆′)‖ �
√

2.

On the other hand, Lemma 2.2 implies that for any arc ∆ strictly inside ∆′

(dist(∆,Γ \ ∆′) > 0) the operator E(∆)SE(Γ \ ∆′) is compact.
Combining the above two facts and using gn

w→ 0 we get that for all
sufficiently small ∆

lim sup
n→∞

‖E(∆)Sgn‖2 = lim sup
n→∞

‖E(∆)SE(∆′)gn‖2

� lim sup
n→∞

‖E(∆′)SE(∆′)‖ · ‖E(∆′)gn‖2

�
√

2 lim sup
n→∞

‖E(∆′)gn‖2 =
√

2ρ(∆′)

If there exist small arcs ∆, ∆′, ∆ is strictly inside ∆′ such that ρ(∆) �√
2ρ(∆′) we get

lim sup
n→∞

‖E(∆)Sgn‖ �
√

2ρ(∆′) � 2ρ(∆) = 2 lim sup
n

‖E(∆)gn‖2,

and we are done.
Suppose there are no such ∆ and ∆′. Then there exists a strictly decreas-

ing (∆k+1 is strictly inside of ∆k) sequence of arcs ∆k, k = 1, 2, ... containing
x, arcs ∆k agree with Pn, such that

|∆k|
|∆k+1|

� 1.1, but
ρ(∆k)

ρ(∆k+1)
>

√
2.
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We know that ρ(∆1) � ρ(Γ) � 1. Therefore the above inequalities imply
that for sufficiently large k we have for

ρ(∆k) � δ√
2
· |∆k+1|.

This implies for ∆ = ∆k+1, ∆′ = ∆k

lim sup
n→∞

‖E(∆)Sgn‖ �
√

2ρ(∆′) � δ|∆|.

Now we are in a position to complete the proof of Theorem 0.1. By
Lemma 2.4

lim sup
n→∞

‖E(∆)fn‖ =
√

‖E(∆)f‖2 + lim sup
n→∞

‖E(∆)gn‖2

� 1√
2

(
‖E(∆)f‖ + lim sup

n→∞
‖E(∆)gn‖

)
,

where gn = f − fn. We know that

‖E(∆)fn‖ � 1
10

· ‖E(∆)Sfn‖ � 1
10

(
‖E(∆)Sf‖ + ‖E(∆)Sgn‖

)
.

Therefore by Lemma 2.5 for any point τ ∈ Γ and any positive ε, (put δ = 1)
one can find an arc ∆ � τ , |∆| < ε, which agree with Pn and

‖E(∆)f‖ + lim sup
n→∞

‖E(∆)gn‖

�
√

2
10

(
‖E(∆)Sf‖ + lim sup

n→∞
‖E(∆)Sgn‖

)
�

√
2

10

(
‖E(∆)Sf‖ + 2 lim sup

n→∞
‖E(∆)gn‖ + |∆|

)
.

Hence

‖E(∆)f‖ �
√

2
10

(‖E(∆)Sf‖ + |∆|).
This implies

‖E(∆)f‖2 � 1
50

(
‖E(∆)Sf‖2 + 2|∆| · ‖E(∆)Sf‖ + |∆|2

)
Pick a sequence of such intervals ∆ � τ , |∆| → 0. Dividing the above
inequality by |∆| and taking lim sup

|∆|→0
we get

lim sup
|∆|→0

1
|∆|

∫
∆

|f(z)|2 |dz| � 1
50

lim sup
|∆|→0

1
|∆|

∫
∆

|
(
Sf

)
(z)|2 |dz|

According to Lebesgue density theorem, cf [16, Theorem 7.16] for any
locally L1 function F limit

lim
|∆|→0,x∈∆

1
|∆|

∫
∆

F = F (x)
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for almost all x; here the limit is taken over intervals (arcs) containing x.
Therefore

|f(τ)| �
√

2
10

|
(
Sf

)
(τ)|

for almost all τ . Hence, there exists a function ϕ ∈ L∞, ‖ϕ‖∞ �
√

2
10 , such

that
f = ϕSf.

But, by Theorem 1.1, the operator I − ϕS is invertible, so we got a contra-
diction.
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