
SCALAR AND VECTOR MUCKENHOUPT WEIGHTS
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Abstract. We inspect the relationship between the Ap,q condition
for families of norms on vector valued functions and the Ap condition
for scalar weights. In particular we will show if we are considering a
norm-valued function ρ(·) such that, uniformly in all nonzero vectors x,
ρ(·)(x)p ∈ Ap and ρ∗(·)(x)q ∈ Aq then the following hold: If p = q = 2,

and functions take values in R2 then ρ ∈ A2,2. If p = q = 2 and func-
tions take values in Rd, d ≥ 6, ρ need not be an A2,2 weight. If ρ satisfies
the relatively weak A0,0 condition in addition to the scalar conditions
mentioned above, then ρ ∈ Ap,q.

0. Introduction

The famous Hunt–Muckenhoupt–Wheeden (Coifman–Fefferman) Theo-
rem states that the Hilbert Transform T is a bounded operator in the
weighted space Lp(w) (1 < p < ∞) if and only if the weight satisfies the
so-called Muckenhoupt Ap condition:

(Ap) sup
I⊂R

( 
I
w

)( 
I
w−q/p

)p/q

< ∞;

Here the supremum is taken over all intervals I of the real line (of Rn),
1/p + 1/q = 1, and

�
I
f(t)dt = |I|−1

�
I
f(t)dt. The above supremum is

called the Muckenhoupt Ap norm of the weight w, and will be denoted in
what follows by [w]

Ap
.

While this is standard notation, we nevertheless recall that the norm in
the weighted space Lp(w) is defined by

‖f‖p

Lp(w)
=
�
|f(t)|pw(t)dt (1 ≤ p < ∞).

One can easily generalize the notion of a weighted Lp space to the case of
vector-valued functions (with values in Cd or Rd, d < ∞) and matrix-valued
weights. Namely, if W is a matrix-valued weight, i.e. a function (on R or
Rn) whose values are positive semidefinite matrices, then it is natural to
define the norm in the weighted space Lp(W ) as

‖f‖p
Lp(W ) =

�
‖W 1/p(t)f(t)‖pdt.
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For p = 2 this norm looks especially nice,

‖f‖2
L2(W ) =

�
(W (t)f(t), f(t))dt.

For other p this definition also looks quite natural, especially if one notices
that (under the assumption that the matrices W (t) are invertible a.e.) the
boundedness of an operator T in the weigted space Lp(W ) is equivalent to
the boundedness of the product M

1/p
W TM

−1/p
W in the non-weighted Lp: here

MW stands for the multiplication operator, MW f := Wf .
Motivated by problems in the theory of stationary processes, in [7] Treil

and Volberg introduced the matrix analogue A2 of the Muckenhoupt A2

condition. Namely, they proved (under the assumption that the average of
the weight over some interval is invertible) that the Hilbert Transform is
bounded if and only if the weight W satisfies the condition

(A2) sup
I

∥∥∥∥∥∥
( 

I

W (t)dt

)1/2( 
I

W (t)−1dt

)1/2
∥∥∥∥∥∥ ≤ C < ∞

(here again the supremum is taken over all intervals I ⊂ R). Then in [5]
and [8] this condition was generalized to the case of other exponents p, and
the condition Ap,q was introduced. To explain this condition one needs to
introduce some notation.

First, for reasons which will soon be clear, it is more convenient to work
in more general situation of norm-valued weights. Namely, let t 7→ ρt, t ∈ R
be a function whose values are norms (or even seminorms) on Rd or Cd.
We assume this function to be measurable in the sense that for any vector
x ∈ Rd the function t 7→ ρt(x) is measurable. For the sake of brevity we will
use simply the symbol ρ for such functions. To avoid confusion we will use
the bold symbol ρ in cases when we need a constant norm on Rd or Cd.

So, let ρ be a measurable norm-valued function. The norm in the weighted
space Lp(ρ) is defined by

‖f‖p
Lp(ρ) :=

�
ρt(f(t))pdt.

The weighted space Lp(W ) with a matrix weight W is a particular case of
the space Lp(ρ) with ρt defined by ρt(x) = ‖W (t)1/px‖.

For a constant norm (seminorm) ρ on Rd (or Cd) let ρ∗ denote the dual
norm,

ρ∗(x) = sup
y 6=0

|(x, y)|
ρ(y)

.

Here (x, y) stands for the standard inner product in Rd (or Cd). Note, that
if ρ is only a seminorm, ρ∗(x) can be infinite.
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If ρ is a norm-valued function, we define the function ρ∗ by ρ∗t = (ρt)∗.
For a norm-valued function ρ we denote by 〈ρ〉

I,p
its p-average,

〈ρ〉
I,p

(x) :=
( 

I
ρt(x)pdt

)1/p

, x ∈ Rd.

This expression makes sense for all p ∈ (0,∞), although only for p ≥ 1 will
the result be a convex function on Rd, i.e. a (semi)norm.

We will also use the notation 〈ρ〉
I,0

for the geometric mean of ρ,

〈ρ〉
I,0

(x) := exp
{ 

I
ln ρt(x)dt

}
, x ∈ Rd.

Using the introduced notation, let us define the Ap,q condition as

(Ap,q) 〈ρ∗〉
I,q

≤ C〈ρ〉∗
I,p

(the q-average of the dual norm is dominated by the dual of p-average)1

for all intervals (cubes) I. Note that if 1/p + 1/q = 1 then the opposite
inequality always holds with C = 1.

Nazarov–Treil [5] and Volberg [8] proved that the Hilbert Transform is
bounded for in the weighted space Lp(ρ) (1 < p < ∞) if and only if the
weight ρ satisfies the above condition Ap,q with 1/p + 1/q = 1.

Note that in the scalar case, if the norm ρt is given by ρt(x) = w(t)1/p|x|,
the Ap,q condition for ρ (1/p + 1/q = 1) is equivalent to the classical Muck-
enhoupt condition Ap for w. Namely, the condition Ap,q can be rewritten in
this case as

sup
I⊂R

( 
I
w

)1/p( 
I
w−q/p

)1/q

≤ C < ∞;

Also, for p = 2 and the norm-valued function ρ given by the matrix
weight W , ρt(x) = (W (t)x, x)1/2 = ‖W (t)1/2x‖, the condition A2,2 for ρ is
equivalent to the matrix Muckenhoupt condition A2 for W , see [5] for the
detailed discussion.

The Ap,q condition looks rather complicated, and it is natural to ask
whether it is possible to simplify it. In particular, whether it is possible to
reduce it to the classical scalar Ap condition.

One direction is easy. As it was discussed in [5], for a fixed interval I
the best constant C in the estimate 〈ρ∗〉

I,q
≤ C〈ρ〉∗

I,p
is exactly the norm

of the averaging operator f 7→ χ
I
·
�
I f in Lp(ρ). So, if we restrict our

attention to the functions of form f = ϕx, where ϕ is a scalar function, and
x is a constant vector, then one can conclude that the condition ρ ∈ Ap,q,
1/p + 1/q = 1 implies that the weight w = wx, wx(t) = ρt(x) is a scalar
Muckenhoupt Ap weight. Moreover, its Muckenhoupt norm [wx]

Ap
can be

estimated by Cp, where C is the constant from the Ap,q condition.

1For the dual of average we will use the shorter notation 〈ρ〉∗
I,p

instead of more “gram-

matically correct” but longer
(
〈ρ〉

I,p

)∗
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Therefore, one can conclude that the scalar weights wx, x ∈ Rd are
uniformly Ap in the sense that their Muckenhoupt norms are uniformly
bounded. (Note that this statement can be proven directly, see Lemma 1.5
below).

Since a norm ρ ∈ Ap,q if and only if ρ∗ ∈ Aq,p (with the same constant),
the same conclusion can be made about the weights vx, x ∈ Rd, vx(t) =
ρ∗t (x)q, namely that the weights vx are uniformly Aq weights, 1/p+1/q = 1.
The main question addressed in this paper is whether this implication can
be reversed. That is, we want to determine under what conditions knowing
the wx and vx are uniformly Ap and Aq respectively allows us to conclude
that ρ ∈ Ap,q. The remainder of the paper is dedicated to answering this
question in several instances.

Section 1 addresses some further properties of dual norms, Ap scalar
weights, and Ap,q norms that will be useful in our calculations. In sec-
tion 2 we will discuss how an additional assumption of the A0,0 condition,
the weakest of the Ar,s conditions, on ρ will allow us to bridge the gap be-
tween the scalar Ap and Aq conditions on wx and vx and the Ap,q condition
on ρ. The gap can also be bridged if the range has real dimension 2 and
p = q = 2, as will be shown in section 3. In the final two sections we will
show that when the dimension of the range is at least 6 and p = q = 2 then
the Ap,q condition on ρ is a stronger condition than the uniform Ap and Aq

conditions on wx and vx. First we will construct an example with a domain
of SO6 and the use a space filling curve to convert this to an example with
domain R1.

1. Some facts about dual norms, Ap, and Ap,q.

In this section we establish some basic properties of dual norms, Ap

weights and Ap,q norms on vector spaces.
We begin with a few properties of dual norms. Let ρ be a norm on some

vector space X . Denote by Y the dual space of X . We recall from the
introduction that the dual norm, ρ∗, to ρ is given by

(1.1) ρ∗(y) = sup
x 6=0

|(y, x)|
ρ(x)

where (y, x) denotes the dual pairing. For our purposes X = Y = Cd or Rd

and (y, x) is the usual inner product. Since Cd and Rd are reflexive, ρ = ρ∗∗

for any norm. In some sense, a dual norm is like the inverse of a positive
matrix; it is easy to check that if ρ(x) = ‖Wx‖ then ρ∗(x) = ‖W−1x‖. We
also observe that taking dual norms switches the direction of inequalities.

Lemma 1.1. If ρ1 ≤ ρ2 in the sense that ρ1(x) ≤ ρ2(x) for all x then
ρ∗2 ≥ ρ∗1 (in the same sense).

Proof. Notice that in the definition of dual norms, computing ρ∗2 involves
taking a supremum over a larger set than computing ρ∗1. �
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1.1. A partial ordering of Ar,s conditions. ¿From the introduction we
recall the Ap,q condition:

(Ap,q) 〈ρ∗〉
I,q

≤ C〈ρ〉∗
I,p

Furthermore, we note that this condition still makes sense if p and q are not
conjugate exponents. Moreover, it can be defined for all p, q ∈ [0, 1), not
only for p, q ≥ 1 (recall that 〈ρ〉

I,0
denotes the geometric mean). We should

also notice that although for p < 1 the average 〈ρ〉
I,p

is not necessarily a
norm, it is still a 1-homogeneous function, so the dual norm is well defined
and is still a norm.

Let us use the exponents r and s to emphasize that r and s are not
necessarily conjugate exponents. If r > r̃ ≥ 0 then using Hölder’s inequality
(Jensen’s inequality if r̃ = 0) we get:

(1.2) 〈ρ〉
I,r̃

(x) =

( 
I

(ρt(x))r̃dt

)1/r̃

≤

( 
I

(ρt(x))rdt

)r̃/(rr̃)

= 〈ρ〉
I,r

(x).

Taking dual norms allows us to also say that if r > r̃ ≥ 0 then 〈ρt〉∗I,r
(x) ≤

〈ρt〉∗I,r̃
(x).

Putting these two inequalities together gives us the following lemma:

Lemma 1.2. If r > r̃ ≥ 0, s > s̃ ≥ 0 and ρ ∈ Ar,s then ρ ∈ Ar̃,s̃.

Proof.
〈ρ∗〉

I,s̃
≤ 〈ρ∗〉

I,s
≤ C〈ρ〉∗

I,r
≤ C〈ρ〉∗

I,r̃

�

In this sense A0,0 is the weakest Ar,s condition.
We continue with a discussion of how dual norms and averages of norms

relate. The following useful lemma can be derived directly from the defini-
tion of a dual norm.

Lemma 1.3. Let ρ be a norm on a Hilbert space E and x, y ∈ E. Then
|(x, y)| ≤ ρ(x)ρ∗(y).

In the following we will find it useful to rearrange Lemma 1.3 as follows:

(1.3)
1

ρ(x)
≤ ρ∗(y)
|(x, y)|

.

We will also need the following lemma.

Lemma 1.4. If 1/p + 1/q = 1 then

〈ρ∗〉
I,q

(x) ≥ 〈ρ〉∗
I,p

(x)

Proof. Applying Hölder’s inequality we get

(1.4) |(x, y)| ≤ 1
|I|

�
I

ρt(y)ρ∗t (x)dt ≤ 〈ρ(x)〉
I,p
〈ρ∗(y)〉

I,q
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Now we divide by 〈ρ∗(y)〉
I,q

and take the supremum over all y 6= 0, yielding

〈ρ∗(x)〉∗
I,q

≤ 〈ρ(x)〉
I,p

Taking the dual norms of both sides reverses the inequality. �

Note that the Ap,q condition tell us that a norm satisfies the reverse
inequality (up to a constant).

1.2. A∞ and Ap,0 conditions. Let us recall the classical A∞ condition for
scalar weights. A weight w is said to satisfy A∞ condition if it satisfies a
reverse Jensen inequality 

I
w(t)dt ≤ C exp

{ 
I
lnw(t)dt

}
.

Note, that very often a different definition of A∞ is used; the above definition
is equivalent to the classical one.

If we use our “norm-valued notation”, ρt = w(t)1/p (formally we should
write ρt(x) = w(t)1/p|x|, x ∈ R1), then the w ∈ A∞ if and only if ρ satisfies
Ap,0 condition discussed above.

Using the discussed above ordering of Ar,s conditions, one can conclude
that if the weight w ∈ Ap implies w ∈ A∞. This fact is very well known in
classical (scalar) harmonic analysis, and we just gave an alternative proof of
it.

1.3. Why ρ ∈ Ap,q implies (ρ(x))p ∈ Ap. In the introduction we discussed
that ρ being Ap,q implies that (ρ(x))p ∈ Ap and (ρ∗(x))q ∈ Aq, both uni-
formly independent of the choice of unit vector x. Here we show this result
by direct calculation, as in [8].

Lemma 1.5. Let ρ be an Ap,q norm. Then (ρ(x))p ∈ Ap and (ρ∗(x))q ∈ Aq

are both weights with the constant in the Muckenhoupt condition independent
of the choice of unit vector x for all x 6= 0.

Proof. Given an ε > 0 and nonzero vector x choose a unit vector y(x, ε)
such that

〈ρ〉
I,p

= sup
y

|(x, y)|
〈ρ〉∗

I,p
(y)

≤ (1 + ε)
|(x, y(x, ε))|
〈ρ〉∗

I,p
(y(x, ε))

.

Thus(
1
|I|

�
I

(ρt(x))p

)1/p(
1
|I|

�
I

(ρt(x))−q

)1/q

≤ 〈ρ〉
I,p

(x)〈 ρ∗t (y(x, ε))
|(x, y(x, ε))|

〉
I,q

≤
〈ρ〉

I,q
(x)〈ρ∗〉

I,q
(y(x, ε))

|(x, y(x, ε))|
≤ C

〈ρ〉
I,p

(x)〈ρ〉∗
I,q

(y(x, ε))

|(x, y(x, ε))|
≤ (1 + ε)C

In the first line we use (1.3) and in the last line we use Lemma 1.4. By letting
ε decrease to 0 we see that the same constant from the Ap,q condition may
be used in scalar Ap condition . The proof that (ρ∗(x))q ∈ Aq is similar. �
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1.4. Comparing matrix norms and arbitrary norms on a vector
space. Every invertible positive matrix W yields a norm on a finite dimen-
sional vector space via

||x||2
W

= (Wx, x) = ||W 1/2x||2.

A useful result, John’s theorem, discussed and used in [2], is that for an
arbitrary norm ρ there is a matrix W such that

C−1
n ρ(x) ≤ ||W 1/2x|| ≤ Cnρ(x),

where Cn only depends on the dimension of the vector space.
Because of this inequality it is often possible to prove a theorem for matrix

weights and use John’s theorem to get an easy generalization to arbitrary
norms.

2. Scalar Muckenhoupt condition implies the vector one under
A0,0 condition

Conceptually, the obstruction to (ρ(x))p ∈ Ap and (ρ∗(x))q ∈ Aq implying
that ρ ∈ Ap,q comes from the fact that neither of these conditions can control
how much the norms can be rotating as t varies.

It turn out that the A0,0 condition mentioned above as the weakest Ap.q

condition controls this rotation.
Let us first analyze A0,0 condition

〈ρ∗〉
I,0

≤ C〈ρ〉∗
I,0

First of all notice that the inverse inequality 〈ρ〉∗
I,0

≤ 〈ρ∗〉
I,0

is trivial. In-
deed, by the definition of dual norm

|(x, y)| ≤ ρt(x)ρ∗t (y) ∀t.
Taking logarithms and averaging over I we get

ln |(x, y)| ≤
 

I
ln(ρt(x)) dt +

 
I
ln(ρ∗t (y)) dt

which implies
|(x, y)|
〈ρ(x)〉

I,0

≤ 〈ρ∗(y)〉
I,0

.

Taking the supremum over all x 6= 0 we get the desired inequality.
While the average 〈ρ∗〉

I,0
is not generally a norm, only a positive 1-

homogeneous function, the A0,0 condition implies that it is equivalent to
the norm 〈ρ〉∗

I,0
.

The next observation is that A0,0 condition is apparently non-symmetric:
if ρ ∈ A0,0 then taking dual norms we get

〈ρ〉∗∗
I,0

≤ C〈ρ∗〉∗
I,0

,

which is weaker than ρ∗ ∈ A0,0.



8 MICHAEL LAUZON AND SERGEI TREIL

The theorem below shows that if the scalar weights t 7→ ρt(x)p, t 7→ ρ∗t (x)
are uniformly Ap and Aq weights respectively, and ρ ∈ A0,0, then ρ is an
Ap,q weight. In fact, one can even replace Ap and Aq by the weaker A∞
condition.

Theorem 2.1. Let the weights wx, vx, wx(t) := (ρt(x))p, vx(t) := (ρ∗t (x))q,
1/p + 1/q = 1 be be uniformly (in x ∈ Rn) A∞, and let ρ be A0,0. Then the
weight ρ satisfies Ap,q condition.

Proof. Using the A∞ condition for vx (i.e.Aq,0 condition for the norm-valued
function t 7→ ρ∗t (x) on a one-dimensional space) we get

〈ρ∗(x)〉
I,q

≤ C〈ρ∗(x)〉
I,0

≤ C1〈ρ(x)〉∗
I,0

,

where the last inequality comes from the A0,0 condition. Using the A∞
condition on wx (but not using A0,0 condition for ρ∗) we may conclude that

〈ρ(x)〉
I,p

≤ C〈ρ(x)〉
I,0

and taking the dual gives us

〈ρ(x)〉∗
I,0

≤ C〈ρ(x)〉∗
I,p

.

When this is combined with the first inequality in this proof we attain

〈ρ∗(x)〉
I,q

≤ C〈ρ(x)〉∗
I,p

which is the Ap,q condition. �

Note, that in the theorem we only need the condition ρ ∈ A0,0 and we did
not need the “symmetric” condition ρ∗ ∈ A0,0. Of course, the same theorem
would be true under the assumption that only ρ∗ is an A0,0 weight.

3. Scalar Muckenhoupt condition implies the vector one in
dimension 2

While the statement “Uniformly A2 impliesA2,2.” is generally false (as we
will demonstrate later in the paper), if we restrict our attention to weights
on R2 we can show that this statement is true. The reason that this is true
is that the exponent in the A2 condition interacts in a nice way with the
exponents used to compute an inverse volume in dimension 2.

To simplify calculations we will perform all calculations with matrix-
valued weights, and later approximate arbitrary weights with matrix-valued
weights.

Theorem 3.1. Let W be a 2× 2 positive matrix valued function such that
the scalar wieghts (W ( · )x, x) and (W−1( · )x, x) are uniformly A2 over all
unit vectors x ∈ R2. Then W satisfies the matrix A2 condition.

3.1. Proof of Theorem 3.1.
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3.1.1. Volumes, determinants, and norms. We will now discuss volumes of
unit balls for various norms, since determinants will be key to our under-
standing of the connection between A2,2 and A2 conditions when the vector
space being considered has real dimension 2.

For a norm ρ on Rn the volume v(ρ) of its unit ball {x ∈ Rn : ρ(x) ≤ 1}
can be computed by

v(ρ) =
1
n

�
Sn−1

ρ(x)dσn−1(x),

where Sn−1 = {x ∈ Rn : ‖x‖ = 1} is the unit sphere in Rn (with respect
to the standard norm), σn−1 is the surface measure on Sn−1 and Cn is the
constant depending on the dimension.

For a norm-valued weight ρ let us compute the volume (of the unit ball)
of the average norm 〈ρ〉

I,2
:

(3.1) v(〈ρ〉
I,2

) =
1
n

�
Sn−1

( 
I
ρt(x)2 dt

)−n/2

dσn−1(x).

On the other hand, computing the average of the volumes v(ρt) yields

〈v(ρ)〉
I

=
1
n

 
I

�
Sn−1

(ρt(x))−ndσn−1(x) dt.

By changing the order of integration we attain

(3.2) 〈v(ρ)〉
I

=
1
n

�
Sn−1

 
I
(ρt(x))−n dt dσn−1(x).

We note that if n = 2 then (3.1) and (3.2) become

v(〈ρ〉
I,2

) =
1
2

�
S1

( 
I
ρt(x)2 dt

)−1

dσ1(x)(3.3)

〈v(ρ)〉
I

=
1
2

�
S1

 
I
(ρt(x))−2 dt dσ1(x)(3.4)

If we assume that the scalar weights t 7→ ρt(x)2 have the A2 norm bounded
by C uniformly in nonzero x, we have: 

I
ρt(x)−2dt ≤ C

( 
I
ρt(x)2dt

)−1

which together with (3.3), (3.4) impies

(3.5) 〈v(ρ)〉
I
≤ Cv(〈ρ〉

I,2
).

The following well-known lemma reminds the reader how volumes and
determinants are related.

Lemma 3.2. Let ρ be a norm in Rn given by ρ(x) = ‖A1/2x‖, where A be
a positive definite matrix. Then

v(ρ) = Cn det A−1/2,
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where Cn is a constant depending on the dimension n (volume of the unit
ball in Rn).

Let W be the weight from Theorem 3.1. For the norm-valued weight
ρ given by ρt(x) = ‖W 1/2(t)x‖ (so 〈ρ〉

I,2
(x) = ‖〈W 〉1/2

I
x‖) equation (3.5)

becomes
〈det W−1/2〉

I
≤ C det〈W 〉−1/2

I
.

Similarly, (3.5) applied to the weight ρ, ρt(x) = ‖W−1/2(t)x‖ gives us

〈det W 1/2〉
I
≤ C det〈W−1〉−1/2

I

Multiplying two above inequalities and using the fact that 1 ≤
�
I ϕ

�
I ϕ−1

we get

1 ≤ 〈det W−1/2〉
I
〈det W 1/2〉

I
≤ C det〈W 〉−1/2

I
det〈W−1〉−1/2

I
,

which implies

(3.6) det〈W 〉
I
det〈W−1〉

I
≤ C.

But this inequality is an equivalent version of the matrix A2 condition, as
the reasoning below asserts. �

3.1.2. Determinant version of the matrix A2 condition. The fact that con-
dition (3.6) is equivalent to the matrix Muckenhoupt A2 condition is well-
known. It is implicitly contained in [7] and [5], and it was first explicitly
stated and proved in [1]. We present the reasoning below just for the sake
of completeness.

Recall that the matrix A2 condition

‖〈W−1〉1/2
I
〈W 〉1/2

I
‖ ≤ C,

can be rewritten as

‖〈W 〉1/2
I
〈W−1〉

I
〈W 〉1/2

I
‖ ≤ C2

Note that

det(〈W 〉1/2
I
〈W−1〉

I
〈W 〉1/2

I
) = det〈W 〉

I
det〈W−1〉

I
.

Then the equivalence of (3.6) and the matrix A2 condition follows from the
two simple lemmas below (in both lemmas the bold symbol I is used for the
identity matrix, not to be confused with the interval I).

The first lemma is a standard and well-known fact.

Lemma 3.3. Let A = A∗ be an n × n matrix satisfying A ≥ I. Then
det A ≤ ‖A‖n.

Proof. Trivial. �

The next lemma is also known, see for example Corollary 3.3 in [7].
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Lemma 3.4. Let W be a matrix-valued weight and let W−1 be integrable
on an interval I. Then

〈W 〉1/2
I
〈W−1〉

I
〈W 〉1/2

I
≥ I.

Proof. This lemma is simply a restatement of Lemma 1.4. Indeed, Lemma
1.4 applied to the weight ρ given by ρt(x) = ‖W 1/2(t)x‖ gives us

〈W−1〉
I
≥ 〈W 〉−1

I

Left and right multiplying both sides of the inequality by 〈W 〉1/2
I

we get the
conclusion of the lemma. �

3.2. Theorem for norm-valued weights. Using John’s Theorem one can
easily extend Theorem 3.1 to the case of norm-valued weights:

Theorem 3.5. Let ρ be a weight on R2 so that the scalar weights t 7→ ρt(x)2

and t 7→ ρ∗t (x)2 are uniformly A2 for all vectors x 6= 0. Then ρ satisfies A2,2

condition.

Proof. The main idea is to use John’s theorem to find a matrix-valued weight
W 1/2 so that

‖W (t)1/2x‖ ≤ ρt(x) ≤ C‖W (t)1/2x‖.
Them everything would follow immediately from Theorem 3.1. The only
technical difficulty here is to guarantee that thew function W is measurable.

There are several possible approaches to overcome this difficulty. One is
to use theory of vector integration. Let us explain it in more details.

A norm ρ on Rn is completely defined by its values on the standard unit
sphere S = {x ∈ Rn : ‖x‖ = 1} in Rn, so one can interpret a norm-valued
function ρ as a function with values in C(S).

We assumed that the scalar functions t 7→ ρt(x) are measurable for all
x. Let us show that the function ρ : R → C(S) is strongly (Bochner)
measurable, i.e. that it can be represented as a uniform limit of measurable
functions with countably many values. Since the space C(S) is separable,
by the Gelfand–Pettis theorem (see [4], Theorem 3.2.2) it is sufficient to
check that the function ρ is weakly measurable, i.e. that the scalar-valued
functions t 7→ 〈ρt, µ〉 are measurable for all µ ∈ C(S)∗.

Given a finite Borel measure µ and a continuous function ϕ on S, and a
partition P = {Ek 3 xk, k = 1, 2, . . . m} of S into finitely many Borel sets
Ek one can define a “Riemann sum”

ΣP (ϕ, µ) :=
∑

k

µ(Ek)ϕ(xk)

It is an easy exercise to show that for any sequence of partitions Pk such
that the maximal diameter of the elements of Pk tends to 0 as k →∞

ΣPk
(ϕ, µ) →

�
S

ϕ dµ as k →∞.
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Let us pick such a sequence of partitions Pk. The measurability of t 7→
ρt(x) implies that the functions t 7→ ΣPk

(ρt, µ) are measurable, and so is
the limit function t 7→

�
S ρt(x) dµ(x).

So we have proved that the function ρ : R → C(S) is strongly measurable,
i.e. that ρ is a uniform limit of a sequence of functions ϕk(t) =

∑
j ak

j χAk
j

(t),

where ak
j ∈ C(S) and Ak

j are Borel subsets of R.
Apriori the functions ak

j do not need to be norms, but without loss of
generality one can always replace ak

j by ρtkj
, where tkj is an arbitrary point

in Ak
j . Therefore, ρ is a uniform limit of measurable norm-valued functions

ρk taking countably many values.
Applying John’s Theorem to ρk one gets the matrix-valued functions Wk

such that
1
C
‖W 1/2

k (t)x‖ ≤ ρk
t (x) ≤ C‖W 1/2

k (t)x‖
If

1
K
‖x‖ ≤ ρt(x) ≤ K‖x‖, ∀t ∀x ∈ Rn,

then the weight Wk with sufficiently large k approximates ρ with slightly
worse constant C.

For the general case a slightly more elaborate reasoning is needed. Namely,
consider the functions

M(t) = sup{ρt(x) : ‖x‖ = 1}, m(t) = inf{ρt(x) : ‖x‖ = 1},
and define the sets

Ak := {t ∈ R : m(t) > 2−k,M(t) < 2k}.
Clearly Ak ⊂ Ak+1 and the set R \ ∪kAk has zero Lebesgue measure.

On each set Ak+1 \Ak the norm-valued function ρ (restricted to the unit
sphere) is bounded away from 0 and ∞, so we can apply the above reasoning
to approximate ρ by measurable weights on each of the sets Ak+1 \ Ak

separately. �

4. A preliminary counterexample for 6× 6 matrices on a cube
in R15

In this section we will construct a preliminary counterexample to the
statement “The scalar weights (Wx, x), (W−1x, x) being uniformly A2 im-
plies that W satisfies the matrix A2 condition.” To do this we will have
to consider higher dimensional domains. We will extend the definitions of
various Muckenhoupt conditions by taking supremums over cubes or balls
instead of intervals. 2

Namely, we will construct the family Wε, ε > 0 of 6×6 continuous weights
on a cube Q = [0, 1]15 ⊂ R15 such that

2There are interesting issues that arise when sets with varying geometry, such as arbi-
trarily “skinny” rectangles are considered. We do not make use of these here.
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(1) The weights Wε are not uniformly matrix A2, namely.∥∥∥∥∥
( 

Q
Wε

)1/2( 
Q

W−1
ε

)1/2
∥∥∥∥∥ ≥ C/

√
ε

(2) The scalar weights wε,x := (Wεx, x) and vε,x := (W−1
ε x, x) neverthe-

less satisfy the Muckenhoupt condition A2 and their Muckenhoupt
norms are uniformly bounded in ε, i.e. for any 15-dimensional cube
R ⊂ Q ( 

R
wε,x

)1/2( 
R

w−1
ε,x

)
≤ C < ∞,

uniformly in 0 < ε < 2−10 (or any small number) and the same for
vε,x.

This family of weights will later be (Section 4.2) used to construct a real
counterexample: we will use a space filling curve to transfer the weights to
an interval, and then use these transfered weights to construct one weight
on the whole real line

The main idea of the counterexample is to take for the weight rotations
of an orthogonal projection. If there are enough “degrees of freedom”, it
will easy to make the scalar weights wx = (Wx, x) to be Muckenhoupt.
However, the “rotating projection” counterexample does not work, because
the inverse weight W−1 is not defined in this case. Therefore, the statement
above, and the construction below are a bit more complicated.

Before proceeding further we present an easy lemma that will help us
estimate the norms of the product of positive matrices.

Lemma 4.1. Let A > C1I and B > C2I be positive definite matrices with
C1, C2 > 0 being constants. Then ‖A1/2B1/2‖ ≥

√
C1C2.

Proof. The assumption A > C1I implies

‖A1/2x‖2 = (Ax, x) ≥ C1‖x‖2 ∀x,

therefore ‖A1/2x‖ ≥
√

C1‖x‖ for all x. Similarly, ‖B1/2x‖ ≥
√

C2‖x‖ for all
x, so

‖A1/2B1/2x‖ ≥
√

C1‖B2x‖ ≥
√

C1

√
C2‖x‖, ∀x,

which immediately implies the conclusion of the lemma. �

4.1. Matrix weights on SO6. Temporarily let the domain be SO6, the
Lie group of all rotations in R6, which has real dimension 15. Instead of
computing the Muckenhoupt conditions by averaging over intervals, we will
compute them by averaging over balls in the natural metric on SO6. One can
simply think, for example that the measure on SO6 as being 15 dimensional
Hausdorff measure on a subset of R36.

Let P and Q be complimentary orthogonal projection onto first three and
last three coordinates in R6



14 MICHAEL LAUZON AND SERGEI TREIL

Define the weight Wε on SO6 for use for our counterexample by

(4.1) Wε(U) = U−1(P + εQ)U, U ∈ SO6.

We will show that for any ε > 0 and any x ∈ R6 the weights wε,x =
(Wεx, x) vε,x = (W−1

ε x, x) are uniformly (in ε and x) A2 weights. Since
εI ≤ Wε ≤ I, one can conclude that each weight Wε is an A2 weight, but
we will show that the constants blow up when ε → 0.

4.1.1. Why the weights Wε are not uniformly A2. To show that the con-
stants in A2 conditions blow up, consider a measurable U ⊂ SO6 of positive
measure. We want to estimate the average 

U
Wε(U) dH15(U).

where H15 is the 15-dimensional Hausdorff measure on SO6.
We first estimate the average on the vector e1—the first vector in the

standard basis in R6. If we get the estimate that depends only on the
measure |U| (we use symbol |U| for H15(U)), the invariance with respect to
the group action gives the estimate for all unit vectors.

Note that

(Wε(U)e1, e1) ≥ (U−1PUe1, e1) = ‖PUe1‖2.

For 0 < α ≤ 1 let Uα := {U ∈ SO6 : ‖PUe1‖ < α}. Since |Uα| → 0
as α → 0, we can pick α = α(|U|) such that |Uα| < |U|/2. Note that for
U ∈ U \Uα we have ‖PUe1‖ ≥ α. Taking into account that |U \Uα| ≥ |U|/2
we get  

U
(Wε(U)e1, e1)dH15(U) ≥ α2/2.

The invariance with respect to the group action implies 
U

Wε(U) dH15(U) ≥ c(|U|)I

where c(|U|) = α(|U|)2/2.
To estimate the average of W−1

ε let us notice that

(4.2) W−1
ε (U) = U−1(P + ε−1Q)U = ε−1U−1(Q + εP )U =

1
ε
Wε(U0U)

where U0 is any transformation in SO6 interchanging the ranges of P and
Q. Therefore, the computation of the average of W−1

ε can be reduced to the
average of Wε: 

U
W−1

ε dH15 =
1
ε

 
U−1

0 U
Wε(U0U) dH15(U) ≥ c(|U−1

0 U|)
ε

I =
c(|U|)

ε
I.

Therefore by Lemma 4.1

(4.3)

∥∥∥∥∥
( 

U
Wε

)1/2( 
U

W−1
ε

)1/2
∥∥∥∥∥ ≥ c(|U|)/

√
ε.
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So, the weights Wε are not uniformlyA2.

4.1.2. Why the scalar weights are uniformly A2. Now we must show that
the weights wε,x, wε,x(U) := (Wε(U)x, x) are uniformly (in ε > 0 and x ∈
R6 \ {0}) A2 weights. Note, that because of translation invariance, it is
again sufficient to consider only the case x = e1, e1 is the first vector in the
standard basis in R6.

First of all, consider the case ε = 0. For the weight w := w0,e1 we have
w(U) = ‖PUe1‖2. It is easy to see that the set M := {U ∈ SO6 : PUe1 =
0} is a smooth submanifold of SO6 of dimension 12.

Indeed, PUe1 = 0 means that the first column of U belongs to the 3-
dimensional space KerP . But the first column must be normalized, so all
possible first columns form a manifold of dimension 2. And it is an easy
exercise (left to the reader) to show that the set of all matrices U with a given
first column can be parametrized by the group SO5, which has dimension
10. Namely, for a matrix U0 ∈ SO6 the set of all matrices U ∈ SO6 with
the same first column can be parametrized as

U = U0

(
1 0
0 Ũ

)
, Ũ ∈ SO5.

Combining all together we get dim M = 10 + 2 = 12.

Lemma 4.2. For U ∈ SO6 we have dist(U,M) � ‖PUe1‖, where � means
equivalence in the sense of two sided estimate.

Proof. The inequality ‖Ue1‖ ≤ dist(U,M) is trivial.
To prove the opposite inequality consider consider x = Ue1. One can

easily find V ∈ SO6 such that V x ∈ Ker P = RanQ and ‖I −V ‖ ≤ C‖Px‖:
one can pick for such V a matrix which is the appropriate rotation in the
plane span(x,Qx) and is identity in the the span(x,Qx)⊥.

Then clearly V U ∈ M and ‖U − V U‖ ≤ C‖Px‖ = C‖PUe1‖.
¿From this fact, recalling the definition of w we get that

w(U) � [dist(U,M)]2.

The submanifold M of SO6 has codimension 3, so it is easy to see that
the weight w satisfies the A2 condition.

Indeed, it is well known and is easy to check directly that the weight on
Rn that behaves as |x|p, |p| < n around 0 and regular (bounded away from
zero and infinity) outside a neighborhood of 0 satisfies A2 condition.

The same computations show that the weight behaving like [dist(x, M)]p

(where M is a linear subspace of codimension n and |p| < n) near M and
regular everywhere else satisfies the Muckenhoupt condition A2. The stan-
dard argument shows that the conclusion remains true if one takes for M a
smooth compact manifold of codimension n, which is exactly our case.

Of course, one can object that our M is a submanifold of SO6, not of
Rd. However, because of the compactness of SO6 one only needs to check
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the Muckenhoupt condition on small balls, and locally there is no difference
between SO6 and R15, so everything works in our case. �

We now need to show that the weights wε := wε,e1 are uniformly A2

weights. The condition (4.1) and the definition of wε imply that

wε = ε + (1− ε)w.

And from here one can easily conclude that all the weights wε satisfy the
Muckenhoupt condition A2 and their Muckenhoupt norms are not worse
than [w]A2 . This can be proved by a simple direct computation, but we
present another, more “high brow” explanation. Namely, let us consider the
2× 2 matrix weight

V =
(

w 0
0 1

)
which clearly satisfies the matrix A2 condition. Then wε = (Waε, aε), where
aε = (

√
1− ε,

√
ε)T , so (see the discussion in the end of Section 0 or Lemma

1.5) the weights wε are uniformly A2

And as we already discussed above, the translation invariance (with re-
spect to group action) gives us the same conclusion for the weights wε,x,
x ∈ R6.

Finally, we need to show that the weight vε,x = (W−1
ε x, x) are also uni-

formly A2 weights. But it follows from (4.2) that

vε,x(U) = ε−1wε,x(U0U), U ∈ SO6,

and since the translation and multiplication by a constant do not change
the Muckenhoupt norm of a weight, the statement about vε,x follows from
th one about wε,x.

4.2. Making the domain be a cube in R15. Consider some chart, i.e. a
smooth injective mapping ϕ : Q → SO6 (where Q is a cube in R15) such,
that the derivative ϕ′ and its inverse [ϕ′]−1 are uniformly bounded on Q.
We assume that the cube Q is a closed cube, and ϕ is actually defined in
some neighborhood of Q.

Using translations and dilations we can assume without loss of generality
that Q = [0, 1]15. Define the 6×6 matrix weights W̃ε on Q by W̃ε := Wε ◦ϕ.

The set U := ϕ(Q) has non-empty interior, so (4.3) implies∥∥∥∥∥
( 

Q
W̃ε

)1/2( 
Q

W̃−1
ε

)1/2
∥∥∥∥∥ ≥ c(|U|)/

√
ε

(of course here one needs the fact that [ϕ′]−1 is uniformly bounded on Q).
On the other hand, it is easy to see that that the change of variables ϕ

with uniformly bounded ϕ′ and [ϕ′]−1 preserves the Muckenhoupt A2 condi-
tion with the control on the Muckenhoupt norm, so the weights wε,x( · ) :=
(Wε( · )x, x), vε,x( · ) := (W−1

ε ( · )x, x) satisfy condition 2 from the beginning
of Section 4

So renaming the weights W̃ε to Wε we get the desired family of weights.
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5. Transferring counterexample to the real line.

In this section we first, using a space filling curve, transfer the constructed
above family of weights Wε on a 15-dimensional cube to an interval. Then
we will use this family to construct the real counterexample.

The main idea of this section is that given a carefully constructed space-
filling curve γ : [0, 1] 7→ [0, 1]15 and a measurable function g : [0, 1]15 7→ E
where E is some vector space, the function f(·) := g(γ(·)) will have averaging
properties on intervals similar to those of g on 15-cubes. We will use this idea
to define W̃ε(·) = Wε(γ(·)). The Wε are the matrix-valued functions defined
on [0, 1]15 which demonstrated that a uniform A2 condition on W and W−1

would not allow us to control the A2 norm of W . Thus W̃ε would provide
an example of matrix-valued functions with the same properties except the
domain would be [0, 1].

5.1. Defining a space-filling curve. We begin with an example of a curve
that maps an interval onto a square, and then work up to an example of a
curve that maps an interval to a 15-cube. A more complete discussion of
space-filling curves can be found in Sagan [6].

We recall the standard construction of the square-filling Peano curve.
Define γ1 : [0, 1] 7→ [0, 1] × [0, 1] = [0, 1]2 by γ(t) = (t, t). Then form the
piecewise affine function γ2 by dividing the square into nine subsquares and
mapping a ninth of the unit interval to each square, as it is shown in the
picture below. Note that both γ1 and γ2 have the same starting and end
points.

� � �

� ��

� � 	

Figure 1. Functions γ1 (left) and γ2 (right). Numbers indi-
cate which subinterval of I corresponds to which affine part
of γ2

To get the function γ3 we replace each affine piece of γ2 by a piecewise
affine function, using the same pattern we used to get from γ1 to γ2 This is
probably clearer pictorially, see Fig. 2 below.

Finally we define γ(t) = limn→∞ γn(t). The map γ : [0, 1] 7→ [0, 1]2 has
the following properties:

• γ is onto and continuous
• For any 9-adic interval I = [m3−2k, (m + 1)3−2k]), its image γ(I) is

a square with area 3−2k.
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���

� � �

��	

�

� �

�

� �

�

	

Figure 2. How to obtain γ3 from γ2: the second affine seg-
ment of γ2 is replaced by piecewise affine function. Of course,
all other large segments should be replaced in the same fash-
ion by piecewise affine functions

• Any two consecutive 9-adic intervals of the same size are mapped to
adjacent squares.

Let us generalize this construction to higher dimensions. Consider first
the case of dimension 3. We start by defining the first function γ1 by γ1(t) :=
(t, t, t). Then we need to split the cube into 27 triadic cubes and to construct
a continuous piecewise affine function γ2, which will serve as a pattern for
replacing affine pieces by a finer piecewise affine function in the construction.
We will need to construct a function γ2 such that

• γ2 is a piecewise affine continuous function; its domain is divided
into 27 equal intervals, and the function is affine on each such an
interval;

• γ1(0) = γ2(0), γ1(1) = γ2(1), i.e. γ1 and γ2 have the same starting
point and the same end point;

• the image of each affine piece of γ2 is a diagonal of a triadic cube;
• moreover, γ2 passes (but only once) through each of the 27 triadic

cubes.

There are many ways to construct the curve, and we present what seems
to us to be the simplest one, utilizing two-dimensional construction discussed
above. Namely, we split the cube into 3 “layers”, 0 ≤ x3 ≤ 1/3, 1/3 ≤ x3 ≤
2/3, 2/3 ≤ x3 ≤ 1, and γ2 will go first through the first layer, then through
the second, and finally through the last.
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Let us consider the first layer: the first 2 coordinates of γ2 are given
exactly by the two-dimensional version of the function γ2 constructed above.
As for the last coordinate x3, on each of the small intervals it is either
affinely increasing from 0 to 1/3 of decreasing from 1/3 to 0. On the Fig. 3
below solid arrows correspond to the segments where x3 increases, and the
dashed ones to the segments where x3 decreases. Note, that we started at
the “bottom” of the first “layer” and ended up on its top, in the opposite
corner.

On the second “layer” we work our way back to the original corner, and
on the third “layer” we essentially repeat the first one. We believe that the
construction of γ2 should be quite evident from Fig. 3 below.

� � �

� ��

� � 	

�� �� ��

�� ����

�� �� �


�	 �� ��

�
 ����

�� �� ��

0 ≤ x3 ≤ 1/3 1/3 ≤ x3 ≤ 2/3 2/3 ≤ x3 ≤ 1

Figure 3. Function γ2 in dimension 3. Solid arrows are
going “up” (the last coordinate x3 increases), and the dashed
ones are going “down”.

Again, by iterating the process of replacing a diagonal segment with a
small copy of γ2 we obtain a sequence {γn} and define the cube filling func-
tion γ := limn→∞ γn.

Now it is easy to generalize the construction to arbitrary dimension d.
Again, we start with the function γ1, γ1(t) = (t, t, . . . , t). To construct the
function γ2 (and thus the replacement pattern) we split the cube into 3
layers, using the last coordinate xd. On each layer the first d−1 coordinates
of γ can be obtained from the function γ2 in the previous dimension, and on
each segment the last coordinate either increases or decreases affinely. Note,
that since each layer has an odd number of triadic cubes, we always start
from the bottom of a layer and end up at its top, so we can join pieces for
each layer into a continuous function.

Again, replacing inductively each affine segment by a piecewise affine
function we get a sequence γn and the d-cube filling curve γ = limn→∞ γn.

We need the function in the dimension 15. Note, that it has the following
properties: γ : [0, 1] 7→ [0, 1]15 such that

• γ : [0, 1] 7→ [0, 1]15 is continuous and onto;
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• for any 315-adic interval I = [m3−15k, (m+1)3−15k] (which has length
3−15k) its image γ(I) is a 15-cube with volume 3−15k.

• Any two consecutive 315-adic intervals of the same size are mapped
to adjacent 3-adic cubes.

Approximating integral by the Riemann sums we get the following

Lemma 5.1. Let f and g be continuous functions on [0, 1] and [0, 1]15 re-
spectively. Let us further suppose that f = g ◦ γ, where γ : [0, 1] 7→ [0, 1]15 is
as above. Then �

γ(I)

g(s)ds =
�

I

f(t)dt

for all intervals I.

Proof. The proof is trivial for 315-adic intervals, one need simply consider
Riemann sums corresponding to partitions of I into smaller 315-adic inter-
vals. The case of arbitrary interval I can be treated by approximation of I
by a union of 315-adic intervals. �

5.2. Prelimianry counterexample on an interval. Let Wε : [0, 1]15 7→
M6×6 be the family of matrix weights defined in subsection 4.2. Thus Wε

are positive matrix-valued functions such that Wε has an A2 norm which
blows up as ε ↘ 0, but the weights wx,ε( · ) := (Wε( · )x, x), vx,ε( · ) :=
(W−1

ε ( · )x, x), are uniformly (in x and ε) scalar A2 weights. Define W̃ε :
[0, 1] 7→ M6×6 by

(5.1) W̃ε(s) = Wε(γ(s)).

Considering averages over [0, 1] and using Lemma 5.1 it is easy to see that
the weights W̃ε are not uniformly A2 weights.

We need to show that the scalar weights w̃x,ε( · ) := (W̃ε( · )x, x), ṽx,ε( · ) :=
(W̃−1

ε ( · )x, x) are uniformly A2 weights. Lemma 5.1 implies that the A2

conditions holds uniformly on 315-adic intervals. To extend this to arbitrary
intervals we use the following lemma:

Lemma 5.2. Let g be an A2 weight, g : [0, 1]15 7→ [0,∞). Let f = g ◦ γ :
[0, 1] 7→ [0,∞). Then f is also an A2 weight with

[f ]
A2

≤ (215315)2[g]
A2

.

Proof. Given an interval I ⊂ [0, 1], we have 3−15(m+1) < |I| ≤ 3−15m for
some integer m. Then I is in the union of (at most) two adjacent 315-adic
intervals of length 3−15m, so γ(I) is in the union of at most 2 triadic cubes
with side 3−m. Then γ(I) ⊂ Q, where Q is a 15-cube, not necessarily triadic,
with side 2 · 3−m.
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Then we use A2 condition for the cube Q to get the estimate on I:∣∣∣∣∣ 1
|I|2

�
I

f(s)ds

�
I

1
f(s)

ds

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
|I|2

�
γ(I)

g(t)dt

�
γ(I)

1
g(t)

dt

∣∣∣∣∣ ≤∣∣∣∣∣ |Q|2|I|2
1

|Q|2

�
Q

g(t)dt

�
Q

1
g(t)

dt

∣∣∣∣∣ ≤(
2153−15(m)

3−15(m+1)

)2

[g]
A2

≤ (215315)2[g]
A2

�

5.3. Extending counterexample to R. Now we are going to present the
final counterexample, namely one weight W which fails to be an A2 weight,
but such, that the scalar weights (W ( · )x, x) and (W−1( · )x, x) are uniformly
A2 weights.

Set εk := 2−102−k and define W̃k := W̃εk
. Let us now symmetrize the

weights W̃k by defining the wieghts Wk on [0, 1]

(5.2) Wk(t) =

{
W̃k(2t) t < 1

2

W̃k(2t− 1) t ≥ 1
2 .

Since the initial weights W̃k were continuous on [0, 1], the periodic extension
of each Wk onto R will be also continuous.

Let btc be the largest integer n, n ≤ t. Let us split [0,∞) into disjoint
union of consecutive intervals Ik, k ≥ 0 with I0 = [0, 1), Ik = [3k−1, 3k).
Note that |Ik| = (2/3)3k. For t > 0 we define

W (t) = Wk(t− btc) for t ∈ Ik,

and extend it symmetrically W (−t) = W (t) to the whole real line.
Clearly the weight W is not a matrix A2 weight (consider averages over

intervals [k, k + 1] with k → ∞). So, it remains to show that the scalar
weights (W ( · )x, x) and W−1( · )x, x) are Muckenhoupt weights. Note, that
A2 condition holds trivially if we restrict ourselves to intervals [k, k + 1], we
need to extend this estimate to all intervals.

Lemma 5.3. Let ũ be a Muckenhoupt A2 weight on [0, 1], i.e. 
I
ũ ·

 
I
ũ−1 ≤ C for all intervals I ⊂ [0, 1]

Let

u(t) :=
{

ũ(2t), t ∈ [0, 1/2]
ũ(2t− 1) t ∈ (1/2, 1].

Let w be the periodic extension of u

w(t) = u(t− btc), t ∈ R.
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Then w is an A2 weight on R

(5.3)
 

I
w ·

 
I
w−1 ≤ 4C for all intervals I ⊂ R.

Proof. The inequality (5.3) trivially holds for for any I of form [m/2, n/2],
m, n ∈ Z.

If |I| ≥ 1/2, consider the smallest interval J = [m/2, n/2], m, n ∈ Z
containing I. Note that |J | ≤ 2|I|, and so 

I
w ≤ |J |

|I|

 
J

w ≤ 2
 

J
w.

Combining it with the similar estimate for w−1 we get (5.3).
It remains to consider the case |I| ≤ 1/2. In this case I ⊂ I1∪I2 where I1,2

are consecutive intervals of form [n/2, (n+1)/2]. Without loss of generality
we can assume that either I1 = [−1/2, 0], I2 = [0, 1/2] or I1 = [0, 1/2],
I2 = [1/2, 1].

Consider the first case, I1 = [−1/2, 0], I2 = [0, 1/2]. Let J1,2 = I ∩ I1,2.
Assume for the definiteness that |J1| ≥ |J2|. Then 

I
w ≤ 1

|I|

�
J1∪(−J1)

w =
2
|I|

�
J1

w =
2|J1|
|I|

 
J1

w ≤ 2
 

J1

w;

the first equality in the chain holds because by the construction w(t) =
w(−t). Combining this estimate with the one for w−1 we get (5.3)

The case I1 = [0, 1/2], I2 = [1/2, 1] can be treated by shifting everything
by 1/2 to the left. It is easy to see that the function w̃, w̃(t) = w(t + 1/2)
we still symmetric, w̃(t) = w̃(−t). �

Let us note that the weights Wk satisfy the estimates

(5.4) Wk+m ≤ Wk ≤ 2mWk+m, k,m ≥ 0,

and therefore

(5.5) 2−mW−1
k+m ≤ W−1

k ≤ Wk+m

To see that, one can notice that matrices P + εkQ from which weights Wk

were constructed, satisfy the inequalities, and all further operation do not
change them.

Fix vector x. Inequalities (5.4) imply that the weights wk( · ) = wk,x( · ) =
(Wk( · )x, x) satisfy

(5.6) wk+m ≤ wk ≤ 2mwk+m, k,m ≥ 0.

Inequalities (5.5) imply similar estimates for the weight v−1
k , where vk( · ) =

(W−1
k ( · )x, x).
We want to show that the weight w( · ) = wx( · ) satisfies the A2 condition

with the constant independent of x. Note, that it is sufficient to check the
A2 condition only for intervals I ⊂ [0,∞). Indeed, because w(−t) = w(t)
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we can always replace I ⊂ (−∞, 0] by −I. As for the general interval I, the
integrals over I are comparable with integrals over I+ := I ∪ −I ∩ [0,∞),

�
I+

w dt ≤
�

I
w dt ≤ 2

�
I+

w dt.

So, let us assume without loss of generality that I ⊂ [0,∞).
We know that all wk = wx,k satisfy A2 condition with some constant C

(independent of x and k). Lemma 5.3 implies that for an interval I ⊂ Ik 
I
w ·

 
I
w−1 ≤ 4C.

If the interval I is contained in 2 consecutive intervals Ik, I ⊂ Ik ∪ Ik+1, the
weight w is equivalent on the interval Ik ∪ Ik+1 to the periodic extension of
the weight wk, see (5.6) with m = 1. But by Lemma 5.3 the latter weight is
A2 with constant 4C, so the above inequality holds (with constant 8C) for
I ⊂ Ik ∪ Ik+1.

Let us now consider the last case, when I ⊂ [0,∞) intersects at least 3 of
the Ik. Choose minimal k and m such that I ⊂ ∪k

j=k−mIj . It follows from
(5.6) that w(t)−1 ≤ wk(t− btc)−1 for t ∈ I and so

(5.7)
 

I
w(t)−1dt ≤

 
I
wk(t− btc)−1dt ≤ 3

2

 
[0,1]

wk(t)−1 dt

To explain the last inequality, note that by periodicity of wk(t− btc)
 

J
wk(t− btc)−1 dt =

 
[0,1]

wk(t)−1 dt

for any interval J of integer length. Therefore we can continue estimates
(5.7):

 
I
wk(t− btc)−1dt ≤ |J |

|I|

 
J

wk(t− btc)−1 dt =
|J |
|I|

 
[0,1]

wk(t)−1 dt,

where J ⊂ I is an interval of integer length. But by the choice of k Ik−1 ⊂ I,
so |I| ≥ |Ik−1| = (2/3)3k−1 ≥ 2, so it is always possible to find an interval
of J ⊂ I integer length such that |J |/|I| < 3/2.

To estimate
�
I w let us notice that |I| ≥ |Ik−1| = (2/3)3k−1. We now

have

 
I
w(t) dt ≤ 1

|I|

� 3k

3k−m−1

w(t) dt ≤
k∑

j=k−m

|Ij |
|I|

 
Ij

wj(t− btc) dt

≤
k∑

j=k−m

3
2
3−(k−j−1)2k−j

 
Ij

wk(t− btc) dt;
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the last inequality here follows from (5.6). Again the periodicity of of wk(t−
btc)  

Ij

wk(t− btc) dt =
 

[0,1]
wk(t) dt ∀j.

So by summing the geometric series we get the bound

(5.8)
1
|I|

�
I

w(t) dt ≤ 33

2

 
[0,1]

wk(t) dt ≤

By multiplying (5.7) and (5.8) we see that w = wx satisfies the A2 condition
uniformly in x 6= 0.

The same reasoning applied to v−1 gives the estimates on the A2 bounds
of v.

6. Concluding remarks and open problems

As we had shown in the paper, the uniform A2 condition for the scalar
weights (W ( · )x, x) and (W−1( · )x, x) implies matrix A2 condition in dimen-
sion 2 (2× 2 matrices) and does not imply it it dimension 6. The situation
in dimension 3, 4, or 5 is still unclear.

Another interesting question is whether in dimension 2 the uniform A2

condition only for the weights (W ( · )x, x) is sufficient for the A2 condition.
Using the same reasoning as in Section 4.1 one can easily construct a coun-
terexample for 4×4 weights. Namely, if P is a orthogonal projection of rank
3 in R4, then the weight W on SO4 given by

W (U) = U∗PU, U ∈ SO4

clearly does not satisfy the matrix A2 condition, but using an obvious mod-
ification of the reasoning from Section (4.1) one can show the scalar weights
(W ( · )x, x) are uniformly A2. So far we were not able to get a counterex-
ample in lower dimensions, although we suspect is should exist even in di-
mension 2.
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