Margulis constant

Jørgensen Inequality

\[\langle f, g \rangle \text{ non-deg } f, g \in \text{PSL}_2 \mathbb{C} \]

\[\mu(f,g) = |\text{tr}^2 f - 4| + |\text{tr} [f,g] - 2| \geq 1 \]

Lemma: \(f \in \text{PSL}_2 \mathbb{C} \)

\[\Theta_f : \text{PSL}_2 \mathbb{C} \to \text{PSL}_2 \mathbb{C} \quad \Theta_f(g) = gf g^{-1} \]

If \(\langle f, g \rangle \) klein, satisfies \(\Theta^n_f(g) = f \) for some \(n \), and \(\text{ord}(f) \neq 2 \), then \(\text{Fix}(f) \) is invariant under \(g \). In particular, \(\langle f, g \rangle \) is elem.

pf: Set \(\text{Fix}(f) = \{x, y \} \). \(g_m = \Theta^n_f(g) \) not of order 2. \(\text{Fix}(g_m) = \{g_m(x), g_m(y)\} = \{x, y \} \) then \(\text{Fix}(g_{m+1}) = \{x, y \} \).

This implies \(\text{Fix}(g_m) = \{x, y \} \), b/c \(g_m \) is not of order 2.

Inductively \(\text{Fix}(g_i) = \{x, y \} \) and \(\{x, y \} \) is invariant under \(g \), so invariant under \(\langle f, g \rangle \), so elementary.

Proof of Jørgensen Inequality: Define \(\Theta_f \) as before. WTS \(\exists n \Theta^n_f(g) = f \) if \(\mu = \mu(f,g) < 1 \), giving a contradiction.

Suppose \(f \) loxod. or elliptic. \(f \) is not of order 2, since \(\text{tr}^2 f = 0 \)

So \(\mu \geq 4 \). Set

\[
\begin{align*}
 f &= \begin{pmatrix} u & 0 \\ 0 & \frac{1}{u} \end{pmatrix} \\
 g &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\
 \Theta^n_f(g) &= g_n = \begin{pmatrix} a^n & b^n \\ c^n & d^n \end{pmatrix}
\end{align*}
\]

\[\text{tr} f = u + \frac{1}{u} \]

\[[f, g] = f g f^{-1} g^{-1} = \begin{pmatrix} u & 0 \\ 0 & \frac{1}{u} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u & 0 \\ 0 & \frac{1}{u} \end{pmatrix} \begin{pmatrix} d & -b \\ c & a \end{pmatrix} \]

\[
\begin{pmatrix}
 u a & u b \\
 c & d
\end{pmatrix} \begin{pmatrix}
 u & 0 \\
 -c & a
\end{pmatrix}
\begin{pmatrix}
 d & -b \\
 c & a
\end{pmatrix}
\begin{pmatrix}
 d & -b \\
 c & a
\end{pmatrix}
\begin{pmatrix}
 u a & u b \\
 c & d
\end{pmatrix}
\]

\[
\begin{pmatrix}
 (ad-bc)u^2 & -ab + a^2 u^2 \\
 cd/u^2 & -cd - cd/u^2 + ad
\end{pmatrix}
\]
\[
\text{tr} [fg] = 2ad - bc u^2 - cb/u^2
\]
\[
|\text{tr}^2 f - 4| = |(u + \frac{1}{u})^2 - 4|
\]
\[
= |u^2 + 2 + \frac{1}{u^2} - 4|
\]
\[
= |u^2 + \frac{1}{u^2} - 2|
\]
\[
= |u - u'|^2
\]
\[
|\text{tr} [f, g] - 2| = |2ad - 2bc u^2 - cb/u^2|
\]
\[
= |2bc - bc u^2 - cb/u^2| \quad \text{ad} - bc = 1
\]
\[
= |bc| |u - u'|^2 \quad 2ad - 2bc = 2 \quad 2ad - 2 = 2bc
\]

so \(\mu(f, g) = |bc + 1| |u - u'|^2\)

Since \(g_{n+1} = g_n f g_n^{-1}\)

\[
\begin{pmatrix}
 a_{n+1} & b_{n+1} \\
 c_{n+1} & d_{n+1}
\end{pmatrix} = \begin{pmatrix}
 a_n & b_n \\
 c_n & d_n
\end{pmatrix}\begin{pmatrix}
 u & 0 \\
 0 & u'
\end{pmatrix}\begin{pmatrix}
 d_n & -b_n \\
 -c_n & a_n
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 a_n u & b_n u^{-1} \\
 c_n u & d_n u'
\end{pmatrix}\begin{pmatrix}
 d_n & -b_n \\
 -c_n & a_n
\end{pmatrix} = \begin{pmatrix}
 a_n d_n u - b_n c_n u^{-1} & -a_n b_n u \\
 c_n d_n u^{-1} - b_n c_n u & a_n b_n u^{-1}
\end{pmatrix}
\]

thus \(b_{n+1}, c_{n+1} = a_n b_n (u - u') c_n d_n (u - u')\)
\[(u-u')^2 \quad \text{and} \quad n = 1\]

Thus, inductively
\[\|bnC_n\| \leq \mu^n \|bc\|\]

So if \(\mu < 1\) \(\text{and} \quad n = 1 + bnC_n \rightarrow 1\)

Thus
\[g_{n+1} = and_n u - bnC_n u' \rightarrow u\]
\[d_{n+1} = and_n u' - bnC_n u \rightarrow u'\]

\[\frac{\|bn+1\|}{\|bn\|} = \|an(u'-u)\| \leq \|u\| \|u' - u\| \leq \|u\| \frac{\mu}{\sqrt{2}}\]

\[\frac{\|cn+1\|}{\|cn\|} = \|dn(u-u')\| \leq \|u'\| \|u - u'\| \leq \|u'\| \mu^2\]

Thus, \(g_n\) converges, and by discreteness of \(\langle f, g \rangle\)

is constant for large \(n\). So
\[g_n = g_{n+1} = g_{n+2} = \ldots \]

for some \(n\), thus
\[g_n = f\].

Next, suppose \(f\) parabolic
\[f = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad |\text{tr}^2 f - 4| = 0\]

\[[fg] = fgf^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -a & -b \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix} \begin{pmatrix} d+c & b-a \\ -c & a \end{pmatrix}\]
\[
\begin{align*}
&\left((a+c)(d+c) - c(b+d) \right) - (a+c)(b+a) + a(b+d) \\
&\left(c(d+c) + d(d+c) \right) - (c(b+a) + ad)
\end{align*}
\]

\[
\text{tr } [f,g] = \begin{align*}
ad + ac + cd + c^2 - cb - cd - ca + ad
\end{align*}
\]

\[
= 2 + c^2
\]

\[
\text{ad - bc} = 1
\]

\[
1 \text{tr } [f,g] - 2 = |c|^2
\]

So \(\mu = |c|^2 \). Moreover,

\[
\begin{pmatrix}
an & bn \\
cn & dn
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
dn & -bn \\
-cn & an
\end{pmatrix}
\]

\[
= \begin{pmatrix}
an & an + bn \\
cn & cn + dn
\end{pmatrix}
\begin{pmatrix}
dn & -bn \\
-cn & an
\end{pmatrix}
\]

\[
= \begin{pmatrix}
andn - ancn - bncn & -anbn + \alpha_n^2 + anbn \\
-cnbn + an(cn + an cn) & cndn - Cndn - C_n^2
\end{pmatrix}
\]

\[
= \begin{pmatrix}
l - an cn & \alpha_n^2 \\
-cn^2 & 1 + an(cn)
\end{pmatrix}
\]
Observe that \(c_{n+1} = -c_n^2 = -(c_{n-1})^2 = -c_{n-1}^4 \), etc.

It is then clear that \(\mu = |c|^2 < 1 \) implies \(c_n \to 0 \)

Since \(a_{n+1} = 1 - an cn \)

\[
|a_{n+1}| = |1 - cn an| \\
\leq |1 - 2an| \\
\leq 1 + \frac{1}{2}|an| \quad \text{for } n \gg 0 \text{ s.t. } |cn| \leq \frac{1}{2}
\]

Thus \(a_n \) is bounded so \(an cn \to 0 \)

so \(an \to 1 \)

Hence \(b_{n+1} = a_n^2 \) implies \(bn \to 1 \)

\(d_{n+1} = 1 + an cn \) implies \(ch \to 1 \)

Thus the \(q_n \) are the same for sufficiently large \(n \), and \(q_n : f \) for some \(n \), so \(\langle f, g \rangle \) is elementary.

(We also know \(g \) fixes \(\text{Fix}(f) = \infty \), so \(c = 0 \))

Corollary: If \(\langle f, g \rangle \) Kleinian satisfies \(\mu(f, g) < 1 \), then \(\text{Fix}(f) \) is \(g \)-invariant.

Lemma: Let \(\langle f_n, g_n \rangle \) be non-elem. Kleinian, \(f_n, g_n \to f, g \) in \(\text{PSL}_2 \mathbb{C} \).

Then

1. \(f \neq 1 \)
2. If \(\{f_n\} \) contains no elliptics, \(f \) is not elliptic.
proof: If \(f_n \to id \) then \(\mu(f_n, g_n) \to id \) as \(n \to \infty \).
Thus \(\langle f_n, g_n \rangle \) is elementary for \(n \) sufficiently large, giving a contradiction.

(2) If \(f \) is elliptic of order \(m \), \(f^m = id \) and so apply part (1).
If \(f \) is \(\infty \)-order, take \(f^k \) very close to the identity, so \(\mu(f^k, g) < 1 \). We have

\[\mu(f^k, g) \to \mu(f^k, g) \]

So \(\text{Fix}(f^k) \) is \(g \)-invariant for \(n \) suff. large. Then since \(\text{Fix}(f^k) = \text{Fix}(f) \), \(\langle f_n, g_n \rangle \) must be elementary, another contradiction.

Theorem: \(\Gamma \) non-elem. Kleinian groups, \(\rho_n: \Gamma_0 \to \Gamma_n \).
Further suppose \(\rho_n(\gamma) \) converges in \(\text{PSL}_2 \mathbb{C} \) \(\forall \gamma \in \gamma_0 \), to some limit \(\rho(\gamma) \). Then

\[\Gamma = \{ \rho(\gamma) \} \gamma \in \gamma_0 \]

is a non-elem. Klein group and \(\rho: \Gamma_0 \to \Gamma \).

pf: It is easy to see that \(\Gamma \) is a group and \(\rho \) a homom. E.g.

\[\rho(\gamma), \rho(\omega) \in \Gamma_0 \text{ then } \rho(\gamma) \rho(\omega) \in \Gamma_0 \text{ b/c} \]

\[\rho_n(\gamma \omega) = \rho_n(\gamma) \rho_n(\omega) \to \rho(\gamma) \rho(\omega) \in \Gamma_0, \text{ etc.} \]

Let \(H_0 = \text{Ker} \rho \). Suppose \(H_0 \) is non-trivial.

Claim: \(H \subset \Gamma \), \(\Gamma \) Klein non-elem, \(H \) normal, then

\[\Lambda(H) = \Lambda(\Gamma) \text{ if } H \neq \{ id \}. \]

pf: Since \(\gamma H \gamma^{-1} = H \forall \gamma \in \Gamma \), \(\Lambda(H) \) is \(\Gamma \)-invariant.
Suppose \(\Lambda(H) \) non-empty. Since it is closed, \(\Lambda(H) \cap \Lambda(\Gamma) \).
\[\Lambda(H) \cap \Lambda(\Gamma) \text{ is obvious, so } \Lambda(H) = \Lambda(\Gamma). \]
If \(\Lambda(H) \) is empty, \(H \) is finite. Then \(U(\chi^h) \) is finite, for \(h \in H \cdot \{ \text{id} \} \). This is also \(\Gamma \) invariant by normality, implying \(\Gamma \) elementary unless \(H = \{ \text{id} \} \).

Thus \(H_0 \) is non-elementary. Choose a free rank 2 subgroup \(\langle f_0, g_0 \rangle \) in \(H_0 \). Let \(f_n = \rho_n(f_0) \), \(g_n = \rho_n(g_0) \), and \(H_n = \langle f_n, g_n \rangle \).

Since \(\rho_n \) is an isomorphism, \(H_n \) is non-elementary. Thus \(\rho(f_0) \) is not the identity by our lemma, and hence cannot be in the kernel, so \(H_0 \) is trivial.

Lastly, we show \(\Gamma \) discrete. Take \(y_1, y_2 \in \Gamma \) s.t.

\[
\langle \rho^{-1}(y_1), \rho^{-1}(y_2) \rangle
\]

is a free subgroup of \(\Gamma_0 \).

If \(\Gamma \) is not discrete, there exists \(h \in \Gamma \cdot \{ \text{id} \} \) sufficiently close to the identity. Then for \(n \gg 0 \)

\[
\mu(\rho_n \circ \rho^{-1}(h), \rho_n \circ \rho^{-1}(y_j)) < 1 \quad (j = 1, 2)
\]

So \(\text{Fix}(\rho_n \circ \rho^{-1}(h)) \) is invariant under \(\rho_n \circ \rho^{-1}(y_j) \).

So \(\langle \rho_n \circ \rho^{-1}(y_1), \rho_n \circ \rho^{-1}(y_2) \rangle \) is elementary, preserving \(\text{Fix}(\rho_n \circ \rho^{-1}(h)) \). But then \(\langle \rho^{-1}(y_1), \rho^{-1}(y_2) \rangle \) would be elementary, giving a contradiction.

(Rmk: By argument similar to these, one can show \(\Gamma < PSL_2(\mathbb{C}) \) is discrete iff any two-generator subgroup of \(\Gamma \) is (Jørgensen 1976).)
Let $U_r(p)$ be a hyperbolic open ball in \mathbb{H}^3 with center p and radius r. Let $I(\Gamma; p, r) = \{ \gamma \in \Gamma \mid \gamma(U_r(p)) \cap U_r(p) \neq \emptyset \}$ and $\Gamma(p, r) = \langle I(\Gamma; p, r) \rangle$.

Margulis Lemma. \(\exists r_0 > 0 \) s.t. \(\forall p \in \mathbb{H}^3 \), \(\Gamma \) torsion-free Kleinian \(\Gamma(p, r) \) is elementary for \(r \leq r_0 \).

pf: Let $I(\Gamma; p, r) = \{ h_1, \ldots, h_m \}$. To show $\Gamma(p, r)$ is elementary, we'll show $\langle h_i, h_k \rangle$ is elementary for all i, k. This implies $\text{Fix}(h_i) = \text{Fix}(h_k) = N(\Gamma)$.

Assume $p \in \mathbb{H}^3$ is $(0, 0, 1)$ and no such constant exists. Choose Γ_n and f_n, g_n in $I(\Gamma; p, \frac{1}{n})$ with $\langle f_n, g_n \rangle$ non-elementary. We know

$$\|f_n\|^2 = 2 \cosh d(p, f_n(p)) < 2 \cosh \frac{1}{n}$$

Similarly for $\|g_n\|^2$. Passing to a subsequence if necessary,

$$f_n, g_n \to f, g \text{ in } \text{PSL}_2 \mathbb{C}. f \text{ fixes } p, \text{ so is elliptic or } \text{id}, \text{ but this contradicts the prior lemma.} \quad \Box$$

Def: $N = N_\Gamma$ complete \mathbb{H}^3 m, $\varepsilon > 0$, $N_{(0, \varepsilon)}$ consists of points $p \in N_\Gamma$ through pass a nontrivial closed curve of length 2ε.

Write $N_{(0, \varepsilon)} = N_{(\varepsilon, \infty)}$, $N_{(0, \varepsilon)} + N_{\text{thin}}, N_{(\varepsilon, \infty)} = N_{\text{thick}}$

- $N_{(0, \varepsilon)}$ is where injectivity radius is $< \varepsilon/2$.

Thm: N_Γ complete \mathbb{H}^3 m, $\varepsilon \leq 2r_0$, then each connected component of $N_{(0, \varepsilon)}$ is isomorphic to one of 3 types.

For $\varepsilon > 0$ define $c = (c(\varepsilon))$ s.t. $d((0, 0, c), (1, 0, 0)) = \varepsilon$. Let

$$H_c = \{ p = (x, y, t) \in \mathbb{H}^3 \mid t > c^2 \}$$
(1) \(\mathbb{H}/J_1 \): \(J_1 = \langle z \mapsto z+1 \rangle \) cyclic parabolic (cusp cylinder)

(2) \(\mathbb{H}/J_2 \): \(J_2 = \langle z \mapsto z+1, z \mapsto z + \bar{z} \rangle \) parabolic (cusp tube)
\[\text{Im } \bar{z} > 0 \quad |\bar{z}| \geq 1 \]
\(\text{abelian} \), rank 2

(3) \(U/\langle \gamma \rangle \): solid torus, \(\gamma \) loxodromic element (Margulis solid)
\(U \) tubular nbhd of axis \(A_\gamma \) (torus)

pf: For \(\gamma \in \Gamma - \{ \text{id} \} \), set
\[\tilde{\gamma}_\gamma = \{ p \in \mathbb{H}^3 \mid d(\gamma, \gamma(p)) < \varepsilon \} \]

If \(\gamma(z) = z+1 \), by def. of \(\gamma \) we have \(\tilde{\gamma}_\gamma = \mathbb{H} \). If \(\gamma \) loxodromic and \(\tilde{\gamma}_\gamma \neq \emptyset \), it is a tubular nbhd of \(A_\gamma \), and to see this consider \(\gamma = 2z \).

Let \(\text{pr} : \mathbb{H}^3 \rightarrow N \), and observe
\[\text{pr}^{-1}(N_{(0,\varepsilon)}) = \bigcup_{\gamma \in \Gamma - \{ \text{id} \}} \tilde{\gamma}_\gamma \]

Take connected component \(\tilde{E} \) of \(\text{pr}^{-1}(N_{(0,\varepsilon)}) \)
Set \(\tilde{J} = \text{Stab}_\Gamma(\tilde{E}) \). Since \(\tilde{E} \) is precisely \(\tilde{J} \)-invariant
\[\gamma \in \Gamma - \{ \text{id} \} \text{ is in } \tilde{J} \text{ iff } \tilde{\gamma}_\gamma \subset \tilde{E} \] Thus
\[\tilde{E} = \bigcup_{\gamma \in \tilde{J} - \{ \text{id} \}} \tilde{\gamma}_\gamma \]

We prove \(\tilde{J} \) elementary. If \(\tilde{\gamma}_\gamma \cap \tilde{\gamma}_{\gamma'} \neq \emptyset \) for \(\gamma, \gamma' \in \tilde{J} - \{ \text{id} \} \), \(\langle \gamma, \gamma' \rangle \) is elementary by Margulis Lemma. Thus
\[\text{Fix}(\gamma) = \text{Fix}(\gamma') \] Since \(\tilde{E} \) is connected
all nontrivial \(\gamma \in \tilde{J} \) have the same Fix point set.
So \(\tilde{J} \) is elementary.

The theorem follows by consider the possibilities for elementary \(J \).