Resolution by weighted blowing up

Dan Abramovich, Brown University
Joint work with Michael Tämkin and Jarosław Włodarczyk

Also parallel work by M. McQuillan with G. Marzo

Conference on Algebraic Geometry, Representation theory and Mathematical Physics

CMSA, April 30, 2019
How to resolve a curve

To resolve a singular curve \(C \)

1. find a singular point \(x \in C \),
2. blow it up.
How to resolve a curve

To resolve a singular curve C

1. find a singular point $x \in C$,
2. blow it up.

Fact

p_a gets smaller.
How to resolve a surface

To resolve a singular surface S one wants to

1. find the worst singular locus $C \in S$,
2. C is smooth - blow it up.
How to resolve a surface

To resolve a singular surface S one wants to

1. find the worst singular locus $C \in S$,
2. C is smooth - blow it up.

Fact

This in general *does not* get better.
Example: Whitney’s umbrella

Consider $S = V(x^2 - y^2z)$
Example: Whitney’s umbrella

Consider $S = V(x^2 - y^2z)$ (image by Eleonore Faber).
Example: Whitney’s umbrella

Consider $S = V(x^2 - y^2z)$ (image by Eleonore Faber).

(1) The worst singularity is the origin.

(2) In the z chart we get

\[
x = x_3z, \quad y = y_3z, \quad \text{giving}
\]

\[
x_3^2z^2 - y_3^2z^3 = 0, \quad \text{or} \quad z^2(x_3^2 - y_3^2z) = 0.
\]
Example: Whitney’s umbrella

Consider $S = V(x^2 - y^2z)$ (image by Eleonore Faber).

(1) The worst singularity is the origin.

(2) In the z chart we get

\[x = x_3z, \quad y = y_3z, \quad \text{giving} \]

\[x_3^2z^2 - y_3^2z^3 = 0, \quad \text{or} \quad z^2(x_3^2 - y_3^2z) = 0. \]

The first term is exceptional, the second is the same as X.
Example: Whitney’s umbrella

Consider $S = V(x^2 - y^2z)$ (image by Eleonore Faber).

(1) The worst singularity is the origin.

(2) In the z chart we get

$x = x_3z, \ y = y_3z, \ \text{giving}$

$x_3^2z^2 - y_3^2z^3 = 0, \ \text{or} \ z^2(x_3^2 - y_3^2z) = 0.$

The first term is exceptional, the second is the same as X.

Classical solution:

(a) Remember exceptional divisors (this is OK)

(b) Remember their history (this is a pain)
Main result

Nevertheless:

Theorem (Å-T-W, MM, “weighted Hironaka”)

There is a procedure F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \bar{J} with blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\text{maxinv}(X') < \text{maxinv}(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F \circ_n (X \subset Y)$ of F has X_n smooth.
Main result

Nevertheless:

Theorem (ℵ-T-W, MM, “weighted Hironaka”)

There is a procedure F associating to a singular subvariety $X \subset Y$ embedded with pure codimension c in a smooth variety Y, a center \bar{J} with blowing up $Y' \to Y$ and proper transform $(X' \subset Y') = F(X \subset Y)$ such that $\text{maxinv}(X') < \text{maxinv}(X)$. In particular, for some n the iterate $(X_n \subset Y_n) := F \circ n(X \subset Y)$ of F has X_n smooth.

Here

\[\text{procedure} \]

means

\[\text{a functor for smooth surjective morphisms:} \]

if $f : Y_1 \to Y$ smooth then $J_1 = f^{-1}J$ and $Y'_1 = Y_1 \times_Y Y'$.
Preview on invariants

For \(p \in X \) we define

\[
\text{inv}_p(X) \in \Gamma \subset \mathbb{Q}_{\geq 0}^n,
\]

with \(\Gamma \) well-ordered, and show

Proposition

- *it is lexicographically upper-semi-continuous, and*
- \(p \in X \) *is smooth if and only if* \(\text{inv}_p(X) = \min \Gamma \).

We define \(\maxinv(X) = \max_p \text{inv}_p(X) \).
Preview on invariants

For \(p \in X \) we define
\[
inv_p(X) \in \Gamma \subset \mathbb{Q}_{\geq 0}^n,
\]
with \(\Gamma \) well-ordered, and show

Proposition
- *it is lexicographically upper-semi-continuous, and*
- \(p \in X \) is smooth \(\iff \) \(inv_p(X) = \min \Gamma \).

We define \(\text{maxinv}(X) = \max_p inv_p(X) \).

Example
\[
inv_p(V(x^2 - y^2 z)) = (2, 3, 3)
\]

Remark
These invariants have been in our arsenal for ages.
Preview on invariants

For \(p \in X \) we define

\[
\text{inv}_p(X) \in \Gamma \subset \mathbb{Q}^{\leq n}_{\geq 0},
\]

with \(\Gamma \) well-ordered, and show

Proposition

- *it is lexicographically upper-semi-continuous, and*
- \(p \in X \) is smooth \(\iff \text{inv}_p(X) = \min \Gamma \).

We define \(\max_{\text{inv}}(X) = \max_{p} \text{inv}_p(X) \).

Example

\[
\text{inv}_p(V(x^2 - y^2z)) = (2, 3, 3)
\]

Remark

These invariants have been in our arsenal for ages.
Preview of centers

If $\text{inv}_p(X) = \text{maxinv}(X) = (a_1, \ldots, a_k)$ then, locally at p

$$J = (x_1^{a_1}, \ldots, x_k^{a_k}).$$

Example

For $X = V(x^2 - y^2z)$ we have $J = (x, y^3, z^3)$; $\bar{J} = (x_1^{1/3}, y_1^{1/2}, z_1^{1/2})$.

Remark

J has been staring in our face for a while.
If \(\text{inv}_p(X) = \text{maxinv}(X) = (a_1, \ldots, a_k) \) then, locally at \(p \)

\[
J = (x_1^{a_1}, \ldots, x_k^{a_k}).
\]

Write \((a_1, \ldots, a_k) = \ell(1/w_1, \ldots, 1/w_k)\) with \(w_i, \ell \in \mathbb{N} \) and \(\gcd(w_1, \ldots, w_k) = 1 \). We set

\[
\bar{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k}).
\]
If \(\text{inv}_p(X) = \text{maxinv}(X) = (a_1, \ldots, a_k) \) then, locally at \(p \)

\[
J = (x_1^{a_1}, \ldots, x_k^{a_k}).
\]

Write \((a_1, \ldots, a_k) = \ell(1/w_1, \ldots, 1/w_k)\) with \(w_i, \ell \in \mathbb{N}\) and \(\gcd(w_1, \ldots, w_k) = 1\). We set

\[
\overline{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k}).
\]

Example

For \(X = V(x^2 - y^2z) \) we have \(J = (x^2, y^3, z^3); \overline{J} = (x^{1/3}, y^{1/2}, z^{1/2}) \).
If \(\text{inv}_p(X) = \text{maxinv}(X) = (a_1, \ldots, a_k) \) then, locally at \(p \)

\[
J = (x_1^{a_1}, \ldots, x_k^{a_k}).
\]

Write \((a_1, \ldots, a_k) = \ell(1/w_1, \ldots, 1/w_k)\) with \(w_i, \ell \in \mathbb{N} \) and \(\gcd(w_1, \ldots, w_k) = 1 \). We set

\[
\overline{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k}).
\]

Example

For \(X = V(x^2 - y^2z) \) we have \(J = (x^2, y^3, z^3); \overline{J} = (x^{1/3}, y^{1/2}, z^{1/2}) \).

Remark

\(J \) has been staring in our face for a while.
Example: blowing up Whitney’s umbrella $x^2 = y^2 z$

The blowing up $Y' \to Y$ makes $\tilde{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

- The z chart has $x = w^3 x_3$, $y = w^2 y_3$, $z = w^2$ with chart

$$ Y' = \left[\text{Spec } \mathbb{C}[x_3, y_3, w] / (\pm 1) \right], $$

with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$.

In fact, X has begged to be blown up like this all along.
Example: blowing up Whitney’s umbrella \(x^2 = y^2z \)

The blowing up \(Y' \rightarrow Y \) makes \(\bar{J} = (x^{1/3}, y^{1/2}, z^{1/2}) \) principal. Explicitly:

- The \(z \) chart has \(x = w^3 x_3, y = w^2 y_3, z = w^2 \) with chart

\[
Y' = \left[\text{Spec} \mathbb{C}[x_3, y_3, w] / (\pm 1) \right],
\]

with action of \((\pm 1) \) given by \((x_3, y_3, w) \mapsto (-x_3, y_3, -w) \).

The transformed equation is

\[
w^6(x_3^2 - y_3^2),
\]
Example: blowing up Whitney’s umbrella $x^2 = y^2 z$

The blowing up $Y' \to Y$ makes $\mathcal{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

- The z chart has $x = w^3 x_3, y = w^2 y_3, z = w^2$ with chart

 $$Y' = \left[\text{Spec } \mathbb{C}[x_3, y_3, w] / (\pm 1) \right],$$

 with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$.

The transformed equation is

$$w^6 (x_3^2 - y_3^2),$$

and the invariant of the proper transform $(x_3^2 - y_3^2)$ is $(2, 2) < (2, 3, 3)$.
Example: blowing up Whitney’s umbrella $x^2 = y^2 z$

The blowing up $Y' \to Y$ makes $\bar{J} = (x^{1/3}, y^{1/2}, z^{1/2})$ principal. Explicitly:

- The z chart has $x = w^3 x_3$, $y = w^2 y_3$, $z = w^2$ with chart

 $$Y' = \text{Spec } \mathbb{C}[x_3, y_3, w] / (\pm 1),$$

 with action of (± 1) given by $(x_3, y_3, w) \mapsto (-x_3, y_3, -w)$.

The transformed equation is

$$w^6(x_3^2 - y_3^2),$$

and the invariant of the proper transform $(x_3^2 - y_3^2)$ is $(2, 2) < (2, 3, 3)$.

In fact, X has begged to be blown up like this all along.
Definition of $Y' \to Y$

Let $\bar{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k})$. Define the graded algebra

$$B_{\bar{J}} \subset O_Y[T]$$

as the image of

$$O_Y[X_1, \ldots, X_n] \longrightarrow O_Y[T]$$

$$X_i \longrightarrow x_i T^{w_i}.$$
Definition of $Y' \to Y$

Let $\bar{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k})$. Define the graded algebra

$$B_\bar{J} \subset \mathcal{O}_Y[T]$$

as the image of

$$\mathcal{O}_Y[X_1, \ldots, X_n] \twoheadrightarrow \mathcal{O}_Y[T]$$

$$X_i \twoheadrightarrow x_i T^{w_i}.$$

Let

$$S_0 \subset \text{Spec}_Y B_\bar{J}, \quad S_0 = V((B_\bar{J})_{>0}).$$

Then

$$Bl_\bar{J}(Y) := \mathcal{P}roj_Y B_\bar{J} := [(\text{Spec} B_\bar{J} \setminus S_0) / \mathbb{G}_m].$$
Description of $Y' \to Y$

- **Charts:** The x_1-chart is

\[
[\text{Spec } k[u, x_2, \ldots, x_n] / \mu_{w_1}],
\]

with $x_1 = u^{w_1}$ and $x_i = u^{w_i}x_i'$ for $2 \leq i \leq k$, and induced action:

\[
(u, x_2, \ldots, x_n) \mapsto (\zeta u, \zeta^{-w_2}x_2, \ldots, \zeta^{-w_k}x_k, x_{k+1}, \ldots, x_n).
\]
Description of $Y' \to Y$

- **Charts:** The x_1-chart is

$$[\text{Spec } k[u, x_2, \ldots, x_n] / \mu_{w_1}],$$

with $x_1 = u^{w_1}$ and $x_i = u^{w_i}x'_i$ for $2 \leq i \leq k$, and induced action:

$$(u, x_2, \ldots, x_n) \mapsto (\zeta u, \zeta^{-w_2}x_2, \ldots, \zeta^{-w_k}x_k, x_{k+1}, \ldots, x_n).$$

- **Toric stack:** Y' corresponds to the star subdivision $\Sigma := v_j \star \sigma$ along

$$v_j = (w_1, \ldots, w_k, 0, \ldots, 0),$$

with the cone

$$\sigma_i = \langle v_j, e_1, \ldots, \hat{e}_i, \ldots, e_n \rangle$$

endowed with the sublattice $N_i \subset N$ generated by the elements

$$v_j, e_1, \ldots, \hat{e}_i, \ldots, e_n,$$

for all $i = 1, \ldots, k$.
Examples: Defining J

(1) Consider $X = V(x^5 + x^3y^3 + y^8)$ at $p = (0, 0)$; write $\mathcal{I} := \mathcal{I}_X$.
 ▶ Define $a_1 = \text{ord}_p \mathcal{I} = 5$. So $J_{\mathcal{I}} = (x^5, y^*)$.
Examples: Defining J

1) Consider $X = V(x^5 + x^3y^3 + y^8)$ at $p = (0, 0)$; write $\mathcal{I} := \mathcal{I}_X$.
 - Define $a_1 = \text{ord}_p\mathcal{I} = 5$. So $J_{\mathcal{I}} = (x^5, y^*)$.
 - To balance x^5 with x^3y^3, we need x^2 and y^3 to have the same weight, so x^5 and $y^{15/2}$ have the same weight.
Examples: Defining J

(1) Consider $X = V(x^5 + x^3y^3 + y^8)$ at $p = (0, 0)$; write $\mathcal{I} := \mathcal{I}_X$.
 - Define $a_1 = \text{ord}_p \mathcal{I} = 5$. So $J_\mathcal{I} = (x^5, y^\ast)$.
 - To balance x^5 with x^3y^3 we need x^2 and y^3 to have the same weight, so x^5 and $y^{15/2}$ have the same weight.
 - Since $15/2 < 8$ we use

\[
J_\mathcal{I} = (x^5, y^{15/2}) \quad \text{and} \quad \overline{J}_\mathcal{I} = (x^{1/3}, y^{1/2}).
\]
Examples: Defining J

(1) Consider $X = V(x^5 + x^3y^3 + y^8)$ at $p = (0,0)$; write $\mathcal{I} := \mathcal{I}_X$.
 - Define $a_1 = \text{ord}_p \mathcal{I} = 5$. So $J_\mathcal{I} = (x^5, y^*)$.
 - To balance x^5 with x^3y^3 we need x^2 and y^3 to have the same weight, so x^5 and $y^{15/2}$ have the same weight.
 - Since $15/2 < 8$ we use
 \[J_\mathcal{I} = (x^5, y^{15/2}) \quad \text{and} \quad \bar{J}_\mathcal{I} = (x^{1/3}, y^{1/2}). \]

(2) If instead we took $X = V(x^5 + x^3y^3 + y^7)$, then since $7 < 15/2$ we would use
 \[J_\mathcal{I} = (x^5, y^7) \quad \text{and} \quad \bar{J}_\mathcal{I} = (x^{1/7}, y^{1/5}). \]
Examples: describing the blowing up

(1) Considering \(X = V(x^5 + x^3y^3 + y^8) \) at \(p = (0, 0) \),

- the \(x \)-chart has \(x = u^3, y = u^2y_1 \) with \(\mu_3 \)-action, and equation
 \[
 u^{15}(1 + y_1^3 + uy_1^8)
 \]

 with smooth proper transform.
Examples: describing the blowing up

(1) Considering $X = V(x^5 + x^3y^3 + y^8)$ at $p = (0, 0)$,

- the x-chart has $x = u^3, y = u^2y_1$ with μ_3-action, and equation

$$u^{15}(1 + y_1^3 + uy_1^8)$$

with smooth proper transform.

- The y-chart has $y = v^2, x = v^3x_1$ with μ_2-action, and equation

$$v^{15}(x_1^5 + x_1^3 + u)$$

with smooth proper transform.
Examples: describing the blowing up

(1) Considering \(X = V(x^5 + x^3y^3 + y^8) \) at \(p = (0, 0) \),
 - the \(x \)-chart has \(x = u^3, y = u^2y_1 \) with \(\mu_3 \)-action, and equation
 \[
 u^{15}(1 + y_1^3 + uy_1^8)
 \]
 with smooth proper transform.
 - The \(y \)-chart has \(y = v^2, x = v^3x_1 \) with \(\mu_2 \)-action, and equation
 \[
 v^{15}(x_1^5 + x_1^3 + u)
 \]
 with smooth proper transform.

(1) Considering \(X = V(x^5 + x^3y^3 + y^7) \) at \(p = (0, 0) \),
 - the \(x \)-chart has \(x = u^7, y = u^5y_1 \) with \(\mu_7 \)-action, and equation
 \[
 u^{35}(1 + uy_1^3 + y_1^7)
 \]
 with smooth proper transform.
 - The \(y \)-chart has \(y = v^5, x = v^7x_1 \) with \(\mu_5 \)-action, and equation
 \[
 v^{35}(x_1^5 + ux_1^3 + 1)
 \]
 with smooth proper transform.
Coefficient ideals
We must restrict to $x_1 = 0$ the data of all

$$I, DI, \ldots, D^{a_1-1}I$$

with corresponding weights

$$a_1, a_1 - 1, \ldots, 1.$$
Coefficient ideals

We must restrict to $x_1 = 0$ the data of all

$$\mathcal{I}, \mathcal{D}\mathcal{I}, \ldots, \mathcal{D}^{a_1-1}\mathcal{I}$$

with corresponding weights

$$a_1, a_1 - 1, \ldots, 1.$$

We combine these in

$$C(\mathcal{I}, a_1) := \sum f(\mathcal{I}, \mathcal{D}\mathcal{I}, \ldots, \mathcal{D}^{a_1-1}\mathcal{I}),$$

where f runs over monomials $f = t_0^{b_0} \cdots t_{a_1-1}^{b_{a_1-1}}$ with weights

$$\sum b_1(a_1 - i) \geq a_1!.$$

Define $\mathcal{I}[2] = C(\mathcal{I}, a_1)|_{x_1=0}$.

Abramovich
Resolution by weighted blowing up
CMSA, April 30, 2019 13 / 19
Defining J_I

Definition

Let $a_1 = \text{ord}_p \mathcal{I}$, with x_1 a regular element in $D^{a_1-1} \mathcal{I}$ - a maximal contact.

Example (1) for $X = V(x^5 + x^3y^3 + y^8)$ we have $I[2] = (y^{180})$, so $J_I = (x^5, y^{15/2})$.

Example (2) for $X = V(x^5 + x^3y^3 + y^8)$ we have $I[2] = (y^{7 \cdot 24})$, so $J_I = (x^5, y^7)$.
Defining $J_{\mathcal{I}}$

Definition

Let $a_1 = \text{ord}_p \mathcal{I}$, with x_1 a regular element in $D^{a_1-1} \mathcal{I}$ - a maximal contact. Suppose $\mathcal{I}[2]$ has invariant $\text{inv}_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k.
Defining $J_{\mathcal{I}}$

Definition

Let $a_1 = \text{ord}_p \mathcal{I}$, with x_1 a regular element in $D^{a_1-1} \mathcal{I}$ - a maximal contact. Suppose $\mathcal{I}[2]$ has invariant $\text{inv}_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k. Set

\[
\text{inv}_p(\mathcal{I}) = (a_1, \ldots, a_k) := \left(a_1, \frac{\text{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!} \right)
\]

and

\[
J_{\mathcal{I}} = (x_1^{a_1}, \ldots, x_k^{a_k}).
\]
Defining $J_{\mathcal{I}}$

Definition

Let $a_1 = \text{ord}_p \mathcal{I}$, with x_1 a regular element in $D^{a_1^{-1}}\mathcal{I}$ - a maximal contact. Suppose $\mathcal{I}[2]$ has invariant $\text{inv}_p(\mathcal{I}[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k. Set

$$\text{inv}_p(\mathcal{I}) = (a_1, \ldots, a_k) := \left(a_1, \frac{\text{inv}_p(\mathcal{I}[2])}{(a_1 - 1)!} \right)$$

and

$$J_{\mathcal{I}} = (x_1^{a_1}, \ldots, x_k^{a_k}).$$

Example

(1) for $X = V(x^5 + x^3y^3 + y^8)$ we have $\mathcal{I}[2] = (y)^{180}$, so

$$J_{\mathcal{I}} = (x^5, y^{180/24}) = (x^5, y^{15/2}).$$
Defining J_I

Definition

Let $a_1 = \text{ord}_p I$, with x_1 a regular element in $\mathcal{D}^{a_1-1}I$ - a maximal contact. Suppose $I[2]$ has invariant $\text{inv}_p(I[2])$ defined with parameters $\bar{x}_2, \ldots, \bar{x}_k$, with lifts x_2, \ldots, x_k. Set

$$\text{inv}_p(I) = (a_1, \ldots, a_k) := \left(a_1, \frac{\text{inv}_p(I[2])}{(a_1 - 1)!} \right)$$

and

$$J_I = (x_1^{a_1}, \ldots, x_k^{a_k}).$$

Example

(1) for $X = V(x^5 + x^3y^3 + y^8)$ we have $I[2] = (y)^{180}$, so $J_I = (x^5, y^{180/24}) = (x^5, y^{15/2})$.

(2) for $X = V(x^5 + x^3y^3 + y^8)$ we have $I[2] = (y)^{7\cdot24}$, so $J_I = (x^5, y^7)$.
What is J?

Definition (Temkin)

Consider the Zariski-Riemann space $\mathbb{ZR}(X)$ with its sheaf of ordered groups Γ, and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

- A **valuative \mathbb{Q}-ideal** is

$$\gamma \in H^0 (\mathbb{ZR}(X), (\Gamma \otimes \mathbb{Q})_{\geq 0})$$.
What is J?

Definition (Temkin)

Consider the Zariski-Riemann space $\mathbf{ZR}(X)$ with its sheaf of ordered groups Γ, and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

- A **valuative \mathbb{Q}-ideal** is

 $$\gamma \in H^0(\mathbf{ZR}(X), (\Gamma \otimes \mathbb{Q})_{\geq 0}).$$

- $I_\gamma := \{ f \in \mathcal{O}_X : v(f) \geq \gamma_v \forall v \}$.
- $v(I) := (\min v(f) : f \in I)_v$.

A center is in particular a valuative \mathbb{Q}-ideal.
What is J?

Definition (Temkin)

Consider the Zariski-Riemann space $\mathbf{ZR}(X)$ with its sheaf of ordered groups Γ, and associated sheaf of rational ordered group $\Gamma \otimes \mathbb{Q}$.

- A **valuative \mathbb{Q}-ideal** is

 $$\gamma \in H^0(\mathbf{ZR}(X), (\Gamma \otimes \mathbb{Q})_{\geq 0}).$$

- $I_\gamma := \{ f \in \mathcal{O}_X : v(f) \geq \gamma \forall \nu \}$.

- $v(I) := (\min v(f) : f \in I)_\nu$.

A center is in particular a valuative \mathbb{Q}-ideal.
Admissibility and coefficient ideals

Definition

J is \mathcal{I}-admissible if $v(J) \leq v(\mathcal{I})$.
Admissibility and coefficient ideals

Definition

J is \mathcal{I}-admissible if $\nu(J) \leq \nu(\mathcal{I})$.

Lemma

This is equivalent to $\mathcal{I} \mathcal{O}_{\mathcal{Y}'} = E^\ell \mathcal{I}'$, with $J = \bar{J}^\ell$ and \mathcal{I}' an ideal.

Indeed, on \mathcal{Y}' the center J becomes E^ℓ, in particular principal.
Admissibility and coefficient ideals

Definition

\(J \) is \(\mathcal{I} \)-admissible if \(v(J) \leq v(\mathcal{I}) \).

Lemma

This is equivalent to \(\mathcal{I} \mathcal{O}_{Y'} = E^\ell \mathcal{I}' \), with \(J = \overline{J}^\ell \) and \(\mathcal{I}' \) an ideal.

Indeed, on \(Y' \) the center \(J \) becomes \(E^\ell \), in particular principal.

Proposition

\(J \) is \(\mathcal{I} \)-admissible if and only if \(J^{(a_1-1)!} \) is \(C(\mathcal{I}, a_1) \)-admissible.

This is a consequence of the following technical, but known, lemma.
Structure of coefficient ideals

Lemma

If \(\text{ord}_p(\mathcal{I}) = a_1 \) and \(x_1 \) a corresponding maximal contact, then in \(\mathbb{C}[x_1, \ldots, x_n] \) we have

\[C(\mathcal{I}, a) = (x_1^{a_1}) + (x_1^{a_1-1} \tilde{\mathcal{I}}_{a!-1}) + \cdots + (x_1 \tilde{\mathcal{I}}_1) + \tilde{\mathcal{I}}_0, \]

where

\[\mathcal{I}_0 \subset (x_2, \ldots, x_n)^{a!} \subset k[x_2, \ldots, x_n], \]

where \(\mathcal{I}_{j+1} := D^{\leq 1}(\mathcal{I}_j) \) satisfy \(\mathcal{I}_{a!-k} \mathcal{I}_{a!-l} \subset \mathcal{I}_{a!-(k+l)} \), and

\[\tilde{\mathcal{I}}_j = \mathcal{I}_j k[x_1, \ldots, x_n]. \]

The lemma and proposition are proven by looking at monomials.
The key theorems

Theorem

\(J_I \) is \(\mathcal{I} \)-admissible.

Proof.

Apply induction!

♠
The key theorems

Theorem

\(J_{I} \) is \(I \)-admissible.

Proof.

Apply induction!

Theorem

\[C(I, a_1) = E^\ell C' \text{ with } \text{inv}_p C' < \text{inv}_p(C(I, a_1)). \]
The key theorems

Theorem

\(J_I \) is \(\mathcal{I} \)-admissible.

Proof.

Apply induction!

\[\blacklozenge \]

Theorem

\[C(\mathcal{I}, a_1) = E^\ell C' \text{ with } \text{inv}_p C' < \text{inv}_p (C(\mathcal{I}, a_1)). \]

Proof.

Indeed, on the \(x_1 \)-chart the first term \(x_1^{a_1} \) becomes exceptional with \(C' = (1) \). On the \(x_i \)-chart we have by induction that

\[\text{inv}_p ((\mathcal{I}_0)') < (a_2, \ldots, a_k), \]

which means that

\[\text{inv}_p ((x_1^{a_1} + \mathcal{I}_0)') = \text{inv}_p ((x_1'^{a_1}) + (\mathcal{I}_0)') < (a_1, a_2, \ldots, a_k), \]

implying the claim.

\[\blacklozenge \]
The end

Thank you for your attention