Volume Under a Function Graph in Polar Coordinates Rectangular Coordinates  Contents

Just as in the Cartesian case, the definite integral of a function of two variables in polar coordinates represents the volume underneath its three-dimensional function graph. 

figure2



[D]


Volume Between Function Graphs in Polar Coordinates  Cylindrical Coordinates  Spherical Coordinates  Rectangular Coordinates  Top of Page  Contents

figure22



[D]

Changing the Order of Integration in Polar Coordiantes Cylindrical Coordinates  Spherical Coordinates  Rectangular Coordinates  Top of Page  Contents

If we apply Fubini's Theorem to integrals using polar coordinates, we get

abcdf(x, y)rdrdθ = ∫cdabf(x, y)rdθdr = ∫∫Rf(r, θ)dA

Where dA = dr*dθ.



figure8


[D]



Exercises

  • One of the change of order of integration demos for Cartesian coordinates discusses "slab approximations". What would slabs look like in polar coordinates? How would you use summation and integral notation to describe slab approximations in polar coordinates?


  • Surface Area for Function Graphs in Polar Coordinates Parametric Equations  Rectangular Coordinates  Top of Page  Contents

    figure23



    [D]

    Total Mass of a Region in the Plane in Polar Coordinates Rectangular Coordinates  Top of Page  Contents
    The mass of an object is calculated by integrating its density function over the region of the domain that it occupies.

    figure6


    [D]



    Center of Mass in Polar Coordinates Cylindrical Coordinates  Spherical Coordinates  Rectangular Coordinates  Top of Page  Contents

    Figure17

    [D]

    Figure18

    [D]

    Figure20

    [D]


    Moment of Inertia in Polar Coordinates Cylindrical Coordinates  Spherical Coordinates  Rectangular Coordinates  Top of Page  Contents

    Figure19

    [D]