§16.7 Stokes’ Theorem

Lecture notes

Key equations

Curl: for a vector field $\F = M\i + N\j + P\k,$ \[ \begin{aligned} \curl\F = \nabla\times\F &= \begin{vmatrix} \i & \j & \k \\[.5em] \pd {}x & \pd{} y & \pd{} z\\[.5em] M & N & P \end{vmatrix}\\ &= \left(\pd Py - \pd Nz\right)\i + \left(\pd Mz - \pd Px\right)\j + \left(\pd Nx - \pd My\right)\k \end{aligned} \] Stokes' theorem: for an oriented smooth surface $(S,\n)$ with boundary curve $C=\partial S,$ \[ \iint_S (\nabla\times\F)\cdot\n\,d\sigma = \oint_C \F\cdot d\r \]

Curl

Stokes' theorem

Interpretation

Examples

  1. Verify Stokes' theorem for the vector field \[ \F = 2yz\i - y^2\j + xy\k \] over the cone \[ S\colon\: z^2 = x^2 + y^2,\quad 0\le z\le 2 \] and the disk \[ D\colon\: x^2 + y^2 = 4,\quad z=2. \]
  2. Verify Stokes' theorem for \[ \F = \frac1{x^2+y^2}(-y\i + x\j) \] over the annulus \[ A\colon\: 1\le x^2+y^2 \le 4 \]