Sergei Treil home page
 
MATH 1130 home page
Syllabus
 
Outline and homework
 
e-mail me
 

MATH 1130, Fall 2007
Outline and homework assignments

Date  Sections What is covered. Comments  Homework assignments 
       
9/5 s. 1.1   Sets, relations  
9/7 s. 1.1 Equivalence relations. Cosets, quotient space. Functions.  p. 23 # 2, 14, 15. Read s. 1.2
       
9/10 s. 1.3 Comparison of infinite sets. Countable and uncountable sets 1. Prove that the set of algebraic numbers is countable.
2. Is the set of all power series with rational coefficients countable? What about the set of polynomials with rational coefficients?
9/12 s. 1.3 Comparison of cardinalities. Cantor-Berstein theorem Prove that R^2 has cardinality continuum (i. e. the sam cardinality as the real line)
9/14 s. 1.5, 1.9 Different ways of defining real numbers Show that if X is an infinite set, and C is countable, then Card(X)=Card(X \union C)
       
9/17 s. 2.1 Review of sequences Click here to get the assignment 
9/19 s. 6.3 Metric spaces. Topology of metric spaces. Click here to get the assignment 
9/21 s. 6.1  Interior, exterior, closure and boundary. Properties of open sets.   Click here to get the assignment 
       
9/24 s. 6.1, 6.4 Topological spaces. Limits and continuity in topological spaces.  Click here to get the assignment 
9/26 s. 6.4 Base of topology. Relative topology Click here to get the assignment 
9/28 s. 6.7 Connected sets. p. 150 # 1, 7, 20, 22
       
10/1 s. 6.5   Sequences and limits. Hausdorf spaces  Click here to get the assignment 
10/3 s. 6.6  Compactness. Sequential compactness Click here to get the assignment 
10/5 s. 6.6 Compactness of a product.  Click here to get the assignment 
       
10/8   Columbus day  
10/10   S. 8.2 Differentiability  
10/12   Midterm 1  
       
10/15   s. 8.1, 8.2 Review of linear algebra. Norms in R^n. Jacobi matrix.  Click here to get the assignment 
10/17   s. 8.4 Partial derivatives and differentiability  
10/19   s. 8.1, 8.2.  Matrix norms. Chain rule  Click here to get the assignment
       
 10/22   s.  8.3  Mean value theorem   
 10/24    s. 8.4 Higher order derivatives. Taylor's formula  Click here to get the assignment
 10/26    s. 8.5 Inverse function and implicit function theorems  p. 198 # 15, 16
       
 10/29    s. 8.5 Proof of the inverse function and implicit function theorems
 10/31    Manifolds.    Click here to get the assignment
 11/2    Manifolds. Tangent spaces  Click here to get the assignment
       
 11/5    Measures, algebras, sigma algebras  Click here to get the assignment
I'll be collecting #1, 4 from this assignment together with assignments from 10/31, 11/2 Wed. Nov. 7
 11/7   Outer measures. Click here to get the assignment
 11/9  s. 9.3  Outer measures  
       
 11/12  s. 9.4  Proof of Caratheodory Theorem  Click here to get the assignment
 11/14   Applications of Caratheodory theorem.    
 11/16   Uniqueness of extension. Complete measures. Borel sigma algebra.   Midterm 2 (take home)
       
 11/19   Uniqueness of translation invariant Borel measure. Hausdorff measures.  Compute Hausdorff measure H_p of the unit cube in R^n for all p.
11/21   Thanksgiving  
11/23    
       
11/26  s. 9.5 Hausdorff dimession. Metric outer measure.  Click here to get the assignment.
Will be collected Fri. 11/30
 11/28  s. 9.5, 9.6 Metric outer measure. Non-measurable sets.    p. 219 # 6 (hint: use # 5), # 14
 11/30  s. 10.1   Measurable functions.  Click here to get the assignment. 
       
 12/2  s 10.1, 10.2  Definition of integral, distribution function.    Click here to get the assignment.
 12/5  s. 10.2  Monotone Convergence theorem, fatou lemma  Click here to get the assignment.